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Abstract

The stability and instabilities of stationary solutions
to the nonlinear Schrödinger equation

and the sine-Gordon equation

Benjamin L. Segal

Chair of the Supervisory Committee:
Professor Bernard Deconinck

Department of Applied Mathematics

I present an analysis of the stability spectrum of all stationary elliptic-type solutions to

the focusing Nonlinear Schrödinger equation and the sine-Gordon equation. An analytical

expression for the spectrum is given. From this expression, various quantitative and quali-

tative results about the spectrum are derived. Specifically, the solution parameter space is

shown to be split into regions of distinct qualitative behavior of the spectrum. Additional

results on the stability of solutions with respect to perturbations of an integer multiple of

the period are given, as well as a procedure for approximating the greatest real part of the

spectrum.
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Chapter 1

INTRODUCTION

The study of the stability of nonlinear waves is a rich field which is constantly developing.

The particular area of research that this work focuses on is the study of integrable Hamil-

tonian systems. These equations occur in many mathematical and physical areas, including

water waves, nonlinear optics, plasma physics, astronomy, quantum mechanics, and more.

They are recognized and studied for their soliton solutions (spatially localized waves which

do not dissipate in time) and for their exact solvability of initial data by use of the Inverse

Scattering Transformation. In this thesis, I focus my attention specifically on the class of

stationary periodic traveling wave solutions, those which limit to the solitons for large period.

Most generically, stability theory addresses the question of whether or not solutions per-

sist when affected by small perturbations. A solution is considered stable if solutions with

nearby initial conditions remain nearby as time evolves. The study of stability is important

for applications in science and engineering as unstable solutions are not likely to be physi-

cally realizable. Understanding how and why solutions go unstable is of great importance.

Studying the stability and instabilities of traveling waves helps us understand the universe

at all scales, ranging from deformations along DNA double helix to the emergence of galaxies

and cosmological phenomena [53,72].

In the literature a few different definitions are used to describe stability. Most general

of them is nonlinear stability. We call a solution ue(x, t) nonlinearly stable if for every

neighborhood U of ue(x, t) there exists a neighborhood V of ue(x, t) such that all trajectories

u(x, t) which start in V never leave U . Assuming we have a norm, this condition can be

written as

∀ε > 0, ∃δ > 0 : ||u(x, 0)− ue(x, 0)||< δ ⇒ ||u(x, t)− ue(x, t)||< ε,∀t > 0. (1.1)
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It turns out this definition is too restrictive for Hamiltonian PDEs. This was discussed first

in detail in Benjamin’s 1972 paper on the stability of solitary waves in the KdV equation [9].

For Hamiltonian PDEs any small difference in initial velocity between two solutions can

manifest itself into a arbitrarily large phase shift in finite time.

A more apt definition for stability of traveling waves was introduced by Benjamin and

allows for a phase shift. This definition is an example of orbital stability and can be written

as

∀ε > 0, ∃δ > 0 : ||u(x, 0)− ue(x, 0)||< δ ⇒ inf
x0∈R
||u(x, t)− ue(x+ x0, t)||< ε,∀t > 0. (1.2)

Prior to this work, using methods relying on integrability, orbital stability was shown for

stationary periodic solutions of the KdV equation [23], the defocusing NLS equation [12], and

the defocusing mKdV equation [26] with respect to subharmonic perturbations. Subharmonic

perturbations are periodic perturbations that have period equal to an integer multiple of the

base period of the solution.

A weaker form of stability is linear stability. We call a solution ue(x, t) linearly stable

if there exists small enough perturbations δu(x, t) to ue(x, t) such that these perturbations

stay arbitrarily small for all time. Assuming we have a norm defined, this condition can be

written as

∀ε > 0, ∃δ > 0 : ||δu(x, 0)||< δ ⇒ ||δu(x, t)||< ε,∀t > 0. (1.3)

For Hamiltonian problems, a sufficient condition for linear stability is that the linear stability

spectrum consists of eigenvalues on the imaginary axis with a complete set of eigenfunctions.

If the eigenfunctions are not complete, instabilities can occur with polynomial growth rates.

The final definition of stability that we mention is spectral stability. This is the weakest

of the definitions of stability we mention. It only requires that the spectrum for the linear

operator has no positive real part. In the case of Hamiltonian systems, the spectrum is

symmetric with respect to the real and imaginary axes [71]. Thus the spectrum must be

purely imaginary for spectral stability. We note that spectral stability is a necessary condition

for linear stability and nonlinear stability.
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In this thesis, most of our attention is focused on spectral stability and instabilities. This

is because most of the solutions studied here are spectrally unstable and hence linearly and

orbitally unstable. For the focusing NLS equation, as we demonstrate below, all stationary

elliptic solutions are spectrally unstable. For the sine-Gordon equation, except for in the

subluminal rotational case, all stationary elliptic solutions are spectrally unstable. The bulk

of this thesis focuses on classifying, these instabilities as much as possible. Fortunately, not

all hope for stability is lost. In Sections 2.9 and 3.9 we discuss the spectral stability of

particular solutions with respect to subharmonic perturbations. In a forthcoming paper we

prove the orbital stability of these solutions [28], with respect to these perturbations.

The outline of the thesis is as follows. In Chapter 2 we extend the methods of [11,12,26]

to the focusing NLS equation. We present an explicit method for determining an analytical

expression for the spectrum and detail various quantitative and qualitative results about

the spectrum. Additionally, we present results on the spectral stability of solutions with

respect to perturbations of an integer multiple of their period, as well as giving a procedure

for approximating the greatest real part of the spectrum. Following this, in Chapter 3 we

present similar results for the sine-Gordon equation. The work for the NLS equation was

done first, but Chapters 2 and 3 are self-contained and one can read Chapter 3 without

reading Chapter 2 if so desired. In Chapter 4, we conclude by highlighting where this work

fits in to a broader research project of studying the stability of periodic solutions to integrable

equations and we give some directions for further work.
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Chapter 2

THE STABILITY SPECTRUM FOR ELLIPTIC SOLUTIONS
TO THE FOCUSING NLS EQUATION

In this chapter, I present an analysis of the stability spectrum of all stationary elliptic-type

solutions to the focusing Nonlinear Schrödinger equation. An analytical expression for the

spectrum is given. From this expression, various quantitative and qualitative results about

the spectrum are derived. Specifically, the solution parameter space is shown to be split into

regions of distinct qualitative behavior of the spectrum. Additional results on the stability of

solutions with respect to perturbations of an integer multiple of the period are given, as well

as a procedure for approximating the greatest real part of the spectrum. The methods used

in this chapter are not new, but expand on the techniques of [11, 12, 26] to accommodate a

problem where the linear operator associated with the stability problem is not self adjoint.

This chapter is published work [27].

2.1 Introduction

The focusing, one-dimensional, cubic Schrödinger equation (NLS) is given by

iΨt +
1

2
Ψxx + Ψ|Ψ|2= 0. (2.1)

In the context of water waves, nonlinear optics, and plasma physics, Ψ(x, t) represents a

complex-valued function describing the envelope of a slowly modulated carrier wave in a

dispersive medium [19,51,65,73]. The equation also arises in the description of Bose-Einstein

condensates [38,58], where Ψ represents a mean-field wave function.

We begin by looking at stationary solutions to (2.1) in the form

Ψ = e−iωtφ(x). (2.2)
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Then φ(x) satisfies

ωφ = −1

2
φxx − φ|φ|2. (2.3)

The stationary solutions we study in this chapter are the elliptic solutions to this equation

and their limits. These solutions are periodic or quasi-periodic in x and limit to the well-

known soliton solution as their period goes to infinity. More details on the periodic and

quasi-periodic solutions relevant to our investigation are presented in Section 2.2.

Rowlands [60] was the first to study the stability of elliptic solutions. Using regular

perturbation theory, treating the Floquet parameter as a small parameter, he conjectured

that the stationary periodic solutions to focusing NLS are unstable. Since he expanded in

a neighborhood of the origin of the spectral plane, his calculations suggest modulational

instability for elliptic solutions of focusing NLS. More recently, Gallay and Hărăguş [34]

examined the stability of small-amplitude elliptic solutions, with respect to arbitrary peri-

odic and quasiperiodic perturbations. In a second paper [33], using the methods of [36, 37],

they proved that periodic and quasiperiodic solutions are orbitally stable with respect to

disturbances having the same period. Also, they showed that the cnoidal wave solutions

(see below) are stable with respect to perturbations of twice the period. Hărăguş and Kapit-

ula [41] put some of these results in the more general framework of determining the spectrum

for the linearization of an infinite-dimensional Hamiltonian system about a spatially peri-

odic traveling wave. For the quasi-periodic solutions of sufficiently small amplitude, they

establish spectral instability. Following this, Ivey and Lafortune [42] examine the spectral

stability of cnoidal wave solutions to focusing NLS with respect to periodic perturbations,

using the algebro-geometric framework of hyperelliptic Riemann surfaces and Riemann theta

functions [8]. Their calculations make use of the squared eigenfunction connection as do ours

below. Additionally, they use a periodic generalization of the Evans function. This gives an

analytical description of the spectrum for the cnoidal wave solutions, which we replicate in

this chapter using elliptic functions. Lastly, we mention a recent paper by Gustafson, Coz,

and Tsai [39]. In this paper, the authors give a rigorous version of the formal asymptotic

calculation of Rowlands to establish the linear instability of a class of real-valued periodic
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waves against perturbations with period a large multiple of their fundamental period. They

achieve this by directly constructing the branch of eigenvalues using a formal expansion and

the contraction mapping theorem. In terms of elliptic function solutions, their results are

limited to the cnoidal and dnoidal solutions. Using entirely different methods, we confirm

their results and extend their findings to nontrivial-phase solutions, in effect making the

results of Rowlands rigorous for all elliptic solutions of NLS.

In Sections 2.3, 2.4 and 2.5, using the same methods as [11,12,26], we exploit the integra-

bility of (2.1) to associate the spectrum of the linear stability problem with the Lax spectrum

using the squared eigenfunction connection [1]. This allows us to obtain an analytical expres-

sion for the spectrum of the operator associated with the linearization of (2.1) in the form

of a condition on the real part of an integral over one period of some integrand. However,

unlike in [11,12,26] the linear operator associated with the focusing NLS equation is not self

adjoint. The self adjointness of the linear operator was directly exploited in these papers and

that is not available here. Instead, we proceed by integrating the integrand explicitly. This

is done in Section 2.6. Next, using the expressions obtained, we prove results concerning the

location of the stability spectrum on the imaginary axis in Section 2.7. In Section 2.8, we

present analytical results about the spectrum, and we make use of the integral condition to

split parameter space into different regions where the spectrum shows qualitatively different

behavior. In Section 2.9 we examine the spectral stability of solutions against perturba-

tions of an integer multiple of their fundamental period confirming and extending results

of [33,34,39]. Finally, in Section 2.10 we discuss approximations to the spectral curves in C

found by expanding around known spectral elements. We use those approximations to give

estimates for the maximal real part of the spectrum.
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2.2 Elliptic solutions to focusing NLS

The results of this section are presented in more detail in [18]. We limit our analysis to just

what is necessary for the following sections. We split φ into its amplitude and phase

φ(x) = R(x)eiθ(x), (2.4)

where R(x) and θ(x) are real-valued, bounded functions of x ∈ R. Substituting (2.4) into

(2.3), we find the standard Jacobi elliptic function solutions given by

R2(x) = b− k2sn2(x, k), (2.5)

ω =
1

2
(1 + k2)− 3

2
b, (2.6)

θ(x) =

∫ x

0

c

R2(y)
dy, (2.7)

c2 = b(1− b)(b− k2). (2.8)

Here sn(x, k) is the Jacobi elliptic sn function with elliptic modulus k [17,52,55,70]. Besides

k, the only other parameter present is b, which is an offset parameter for the solutions. We

are not specifying the full class of parameters allowed by the four Lie point symmetries of

(2.1) [56]. Specifically, we are neglecting to include a scaling and a horizontal shift in x. The

use of a Galilean shift allows for the application of our results to traveling wave solutions

as well stationary solutions. The different symmetries are not included here as they do not

produce qualitatively different results to what is covered here, but the methods presented

apply equally well.

In order for our solutions to be valid, we require that both R2(x) and c2 are real, positive,

and bounded. These conditions result in constraints on our parameters:

0 ≤ k < 1, (2.9)

k2 ≤ b ≤ 1. (2.10)

Of special importance is the boundary of this region, as many of the well-studied solutions

to (2.1) lie on the boundary. Specifically, when b = k2 or when b = 1 we have that c = 0 and
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φ(x) = cn(x, k) or φ(x) = dn(x, k) respectively. Here cn(x, k) and dn(x, k) are the Jacobi

elliptic cn and dn functions respectively. These solutions are called trivial-phase solutions,

as there is no phase in φ(x), i.e., c = 0. These solutions are periodic in x, of period 4K(k)

and 2K(k) respectively. Here

K(k) =

∫ π/2

0

1√
1− k2 sin2 y

dy, (2.11)

is the complete elliptic integral of the first kind. As k → 1 these solutions approach the

well-studied stationary soliton solution of (2.1): φ(x) = sech(x).

The other part of the boundary of parameter space occurs when k = 0. Here the am-

plitude of φ(x) is constant and thus the analysis of the solutions simplifies greatly. These

solutions are called Stokes wave solutions. They have the form φ(x) =
√
b exp

(
ix
√

1− b
)
.

The stability of all these boundary cases has been examined to some extent in the literature.

See [34, 42, 48], among others. Figure 2.1 depicts a plot of parameter space with labels for

the boundary cases.

We reformulate our elliptic solutions to (2.1) using Weierstrass elliptic functions [55]

rather than Jacobi elliptic functions. This will simplify working with the integral condition

(2.58) in Section 2.4, as formulas for integrating Weierstrass elliptic functions are well doc-

umented [17, 35]. It is important to note that nothing is lost by switching to Weierstrass

elliptic functions, as we can map any Weierstrass elliptic function to a Jacobi elliptic function,

and vice versa [55]. Let

℘(z + ω3, g2, g3)− e3 =

(
K(k)k

ω1

)2

sn2

(
K(k)z

ω1

, k

)
, (2.12)

with g2 and g3 the lattice invariants of the Weierstrass ℘ function, e1, e2, and e3 the zeros of

the polynomial 4t3− g2t− g3, and ω1 and ω3 the half-periods of the Weierstrass lattice given

by

ω1 =

∫ ∞
e1

dz√
4z3 − g2z − g3

, (2.13)

ω3 = i

∫ ∞
−e3

dz√
4z3 − g2z + g3

. (2.14)
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1 φ(x) = sech(x)

φ(x) = dn(x, k)

φ(x) = cn(x, k)

0 k

b

1

φ(x) =
√
beix

√
1−b

b = k2

Figure 2.1: Visualization of parameter space in terms of b and k with special solutions on
the boundaries labeled.

We look for stationary solutions to (2.1) of the form (2.2). We split φ into its amplitude and

phase, letting

φw(x) = Rw(x)eiθw(x), (2.15)

where Rw and θw are expressed in terms of Weierstrass elliptic functions. Substituting this

ansatz into (2.3) gives solutions in Weierstrass form [21]:

θw(x) = ± i
2

(
log

(
σw(x+ xw + aw, g2, g3)

σw(x+ xw − aw, g2, g3)

)
+ 2(x+ xw)ζw(a)

)
, (2.16)

R2
w(x) = e0 − ℘(x+ xw, g2, g3), (2.17)

g2 = 12e2
0 +K2, (2.18)

g3 = 4K1 − 8e3
0 − e0K2, (2.19)

e0 = −2ω

3
= ℘(aw, g2, g3). (2.20)
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Here σw and ζw are the Weierstrass σ and Weierstrass ζ functions respectively [55], and ω,

K1, K2, and xw are free parameters. The constant aw from (2.20) is given explicitly as

aw = ℘−1(e0, g2, g3). (2.21)

We can recover the Jacobi elliptic solutions from these solutions by fixing the free parameters

ω =
1

2

(
1 + k2 − 3b

)
, (2.22)

K2
1 = c2 = b(1− b)(b− k2), (2.23)

K2 = −4
(
k2 − 2bk2 + 3b2 − 2b

)
, (2.24)

xw = iK′(k), (2.25)

where K′(k) is the complement to K(k) given by K′(k) = K (1− k2). Under this mapping

we have

g2 =
4

3

(
1− k2 + k4

)
, (2.26)

g3 =
4

27

(
2− 3k2 − 3k4 + 2k6

)
, (2.27)

e1 =
1

3

(
2− k2

)
, e2 =

1

3

(
−1 + 2k2

)
, e3 =

1

3
(−1− k2), (2.28)

ω1 = K(k), ω3 = iK′(k). (2.29)

The homogeneity property of the Weierstrass ℘ function [55],

℘(x, g2, g3) = g
1
2
2 ℘
(
g

1
4
2 x, 1, g3g

− 3
2

2

)
. (2.30)

allows us to rewrite (2.17) as

R2
w(x) = −

(
g

1
2
2 ℘
(
g

1
4
2 (x+ xw), 1, g3g

− 3
2

2

)
− e0

)
, (2.31)

which has only one varying lattice invariant g3g
− 3

2
2 . This comes at the cost of rescaling x and

the magnitude of the Weierstrass ℘ function. The formulation (2.31) allows for a display of

parameter space as in Figure 2.1, but using the Weierstrass parameters, see Figure 2.2. In

this figure, we see where the cn, dn, and Stokes wave solutions map to in the Weierstrass

domain.



11

- 0.2 0 0.2

- 1

0

0.5

Figure 2.2: The parameter space for elliptic solutions in Weierstrass form (2.31). The cn,
dn and Stokes wave solutions are found on the boundaries of this space, with the soliton
solution occurring at the limiting point where the dn and cn curves meet.

2.3 The linear stability problem

To examine the linear stability of our solutions we consider

Ψ(x, t) = e−iωteiθ(x)
(
R(x) + εu(x, t) + εiv(x, t) +O(ε2)

)
, (2.32)

where ε is a small parameter and u(x, t) and v(x, t) are the real and imaginary parts of our

perturbation, which depends on both x and t. Substituting (2.32) into (2.1), isolating O(ε)

terms, and splitting into real and imaginary parts, we obtain a system of equations

∂

∂t

 u

v

 = L

 u

v

 =

 −S L−
−L+ −S

 u

v

 = J

 L+ S

−S L−

 u

v

 , (2.33)

with

J =

 0 1

−1 0

 . (2.34)
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The linear operators L+, L−, and S are given by

L− = −1

2
∂2
x −R2(x)− ω +

c2

2R4(x)
, (2.35)

L+ = −1

2
∂2
x − 3R2(x)− ω +

c2

2R4(x)
, (2.36)

S =
c

R2(x)
∂x −

cR′(x)

R3(x)
=

c

R(x)
∂x

1

R(x)
. (2.37)

An elliptic solution φ(x) = R(x)eiθ(x) is by definition linearly stable if for all ε > 0 there

exists a δ > 0 such that if ||u(x, 0) + iv(x, 0)||< δ then ||u(x, t) + iv(x, t)||< ε for all t > 0.

This definition depends on the choice of norm ||·|| which is specified in the definition of the

spectrum in (2.40) below.

Since (2.33) is autonomous in t, we separate variables to look at solutions of the form u(x, t)

v(x, t)

 = eλt

 U(x)

V (x)

 , (2.38)

resulting in the spectral problem

λ

 U

V

 = L

 U

V

 =

 −S L−
−L+ −S

 U

V

 = J

 L+ S

−S L−

 U

V

 . (2.39)

Here

σL = {λ ∈ C : max
x∈R

(|U(x)|, |V (x)|) <∞}, (2.40)

or

U, V ∈ C0
b (R). (2.41)

In order to have spectral stability, we need to demonstrate that the spectrum σL does not

enter into the right half of the complex λ plane. Since (2.1) is Hamiltonian [4], the spectrum

of its linearization is symmetric with respect to both the real and imaginary axis [71]. In

other words, proving spectral stability for elliptic solutions to (2.1) amounts to proving that

the stability spectrum lies strictly on the imaginary axis. In our case, we show that none

of the elliptic solutions are spectrally stable, as we demonstrate spectral elements in the

right-half plane near the origin for any choice of the parameters b and k.
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2.4 The Lax pair

We wish to obtain an analytical representation for the spectrum σL. As mentioned in the

introduction, this analytical representation comes from the squared eigenfunction connection

between the linear stability problem (2.33) and its Lax pair. We begin by formulating (2.1)

in a traveling frame, by defining

Ψ(x, t) = e−iωtψ(x, t), (2.42)

so that ψ satisfies

iψt = −ωψ − 1

2
ψxx − ψ|ψ|2. (2.43)

This equation is equivalent to the compatibility condition χxt = χtx of the following Lax

pair [74]:

χx =

 −iζ ψ

−ψ∗ iζ

χ, (2.44)

χt =

 −iζ2 + i
2
|ψ|2+ i

2
ω ζψ + i

2
ψx

−ζψ∗ + i
2
ψ∗x iζ2 − i

2
|ψ|2− i

2
ω

χ, (2.45)

where ∗ represents the complex conjugate [1, 12]. Regarding (2.44) as a spectral problem

with ζ as the spectral parameter: i∂x −iψ

−iψ∗ −i∂x

χ = ζχ, (2.46)

we see that it is not self adjoint [49]. This means that the spectral parameter ζ is not

necessarily confined to the real axis as it was for defocusing NLS [12] which makes our

analysis more difficult. Since the elliptic solutions are given by ψ(x, t) = φ(x), we restrict

the Lax pair to elliptic solutions by writing

χx =

 −iζ φ

−φ∗ iζ

χ, (2.47)
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χt =

 −iζ2 + i
2
|φ|2+ i

2
ω ζφ+ i

2
φx

−ζφ∗ + i
2
φ∗x iζ2 − i

2
|φ|2− i

2
ω

χ. (2.48)

Henceforth we refer to the spectrum of (2.47) as σL or informally as the Lax spectrum.

Specifically, σL consists of all ζ for which (2.47) has a bounded (in x) eigenfunction solution.

To determine σL we start by rewriting (2.48) in the short-hand form

χt =

 A B

C −A

χ, (2.49)

where

A = −iζ2 +
i

2
|φ|2+

i

2
ω, (2.50)

B = ζφ+
i

2
φx, (2.51)

C = −ζφ∗ +
i

2
φ∗x. (2.52)

Since A, B, and C are independent of t, we separate variables. Let

χ(x, t) = eΩtϕ(x), (2.53)

with Ω being independent of t but possibly depending on x. Substituting (2.53) into (2.49)

and canceling the exponential, we find A− Ω B

C −A− Ω

ϕ = 0. (2.54)

In order to have nontrivial solutions we require the determinant of (2.54) to be zero. Using

the definitions of A,B and C, we get

Ω2 = A2 +BC = −ζ4 + ωζ2 + cζ +
1

16

(
−4ωb− 3b2 − k′4

)
, (2.55)

where k′ =
√

1− k2. We notice that Ω is not only independent of t but also of x. Thus Ω is

strictly a function of ζ and the solution parameters.
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To satisfy (2.54), we let

ϕ(x) = γ(x)

 −B(x)

A(x)− Ω

 , (2.56)

where γ(x) is a scalar function. By construction of ϕ(x), χ(x, t) satisfies (2.48). Since (2.47)

and (2.48) commute, it is possible to choose γ(x) such that χ also satisfies (2.47). Indeed,

γ(x) satisfies a first-order linear equation, whose solution is given by

γ(x) = γ0 exp

(
−
∫

(A− Ω)φ+Bx + iζB

B
dx

)
. (2.57)

For almost every ζ ∈ C, we have explicitly determined the two linearly independent solutions

of (2.47), i.e., those corresponding to the positive and negative signs of Ω in (2.55). Assuming

Ω 6= 0 these two solutions are by construction linearly independent. In the case where ζ

corresponds to Ω = 0 the second solution to (2.47) can be determined via the reduction-of-

order method.

Since (2.47) and (2.48) share their eigenfunctions, σL is the set of all ζ ∈ C such that

(2.56) is bounded for all x ∈ R. Indeed, the vector part of ϕ is bounded for all x, so we

only need that the scalar function γ(x) is bounded as x → ±∞. A necessary and sufficient

condition for this is 〈
Re

(
(A− Ω)φ+Bx + iζB

B

)〉
= 0, (2.58)

where 〈·〉 is the average over one period 2K(k) of the integrand, and Re denotes the real

part. At this point, the integral condition (2.58) completely determines the Lax spectrum

σL.

2.5 The squared eigenfunction connection

A connection between the eigenfunctions of the Lax pair (2.47) and (2.48) and the eigenfunc-

tions of the linear stability problem (2.33) using a squared eigenfunctions is well known [1].

We prove the following theorem.
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Theorem 2.5.1. The vector u

v

 =

 e−iθ(x)χ2
1 − eiθ(x)χ2

2

−ie−iθ(x)χ2
1 − ieiθ(x)χ2

2

 (2.59)

satisfies the linear stability problem (2.33). Here χ = (χ1, χ2)T is any solution of the Lax

pair (2.44-2.45) corresponding by direct calculation to the elliptic solution φ(x) = R(x)eiθ(x).

Proof. The proof is done by direct calculation. For the left-hand side of (2.33), evaluate

(ut, vt) using the product rule and (2.45). Eliminate x-derivatives of u and v (up to order 2)

using (2.44). Upon substitution and using (2.47) and (2.48), the left-hand side and right-hand

side of (2.33) are equal, finishing the proof.

To establish the connection between the σL spectrum and the σL spectrum we examine

the right- and left-hand sides of (2.38). Substituting in (2.59) and (2.53) to the left-hand

side of (2.38) we find

e2Ωt

 e−iθ(x)ϕ2
1 − eiθ(x)ϕ2

2

−ie−iθ(x)ϕ2
1 − ieiθ(x)ϕ2

2

 = eλt

 U

V

 , (2.60)

and we conclude that

λ = 2Ω(ζ), (2.61)

with eigenfunctions given by U

V

 =

 e−iθ(x)ϕ2
1 − eiθ(x)ϕ2

2

−ie−iθ(x)ϕ2
1 − ieiθ(x)ϕ2

2

 . (2.62)

This gives the connection between the σL spectrum and the σL spectrum. It is also necessary

to check that indeed all solutions of (2.39) are obtained through (2.60). This is not shown

explicitly here, but is done analogous to the work in [12].

Although in principle the above construction determines σL, it remains to be seen how

practical this determination is. In the following section we discuss a technique for explicitly

integrating (2.58) using Weierstrass elliptic functions, leading to a more explicit characteri-

zation of σL.
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2.6 The Lax spectrum in terms of elliptic functions

In terms of Weierstrass elliptic functions,

Ω2 = −ζ4 + ωζ2 +K1ζ +
1

4

(
−ω2 − K2

4

)
, (2.63)

while (2.58) becomes

Re

∫ 2ω1

0

(A− Ω)φw +Bx + iζB

B
dx = 0, (2.64)

with A and B given in (2.50) and (2.51). Substituting for φw we find that (2.64) is of the

form

Re

∫ 2ω1

0

C1 + C2℘(x) + C3℘
′(x)

C4 + C5℘(x)
dx = 0, (2.65)

here ℘(x) = ℘(x + xw, g2, g3) with the dependence on xw, g2, and g3 suppressed. The Cj’s

depend on ζ but are independent of x. They are given by

C1 = −2ωζ

3
− K1

2
+ ζ3 − ωζ

6
− iζΩ(ζ),

C2 = −ζ
2
, C3 =

i

4
,

C4 = −Ω(ζ)− iζ2 + i
ω

6
, C5 = − i

2
.

(2.66)

We can evaluate the integral in (2.65) explicitly [35]. We find

Re

[
2ω1C2

C5

+
4(C1C5 − C2C4)

℘′(α)C2
5

(ζw(α)ω1 − ζw(ω1)α)

]
= 0, (2.67)

with

α = α(ζ) = ℘−1

(
−C4(ζ)

C5(ζ)
, g2, g3

)
. (2.68)

Here ℘−1 is a multivalued function, but for the sake of our analysis α is chosen as any value

such that ℘(α) = −C4(ζ)/C5(ζ). Substituting for the Cj’s, (2.65) becomes

Re

[
−2iζω1 +

4i (−K1 + 4ζ3 − 2ζω − 4iζΩ(ζ))

℘′(α)
(ζw(α)ω1 − ζw(ω1)α)

]
= 0. (2.69)

We simplify this further by recognizing that

℘′
2
(α) = 4℘3(α)− g2℘(α)− g3 = 4

(
−C4(ζ)

C5(ζ)

)3

− g2

(
−C4(ζ)

C5(ζ)

)
− g3. (2.70)
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Substituting for C4(ζ) and C5(ζ), changing g2 and g3 to K1 and K2 via (2.18) and (2.19)

respectively, and substituting in (2.63) for higher powers of Ω(ζ) gives

℘′
2
(α) = −4

(
−K1 + 4ζ3 − 2ζω − 4iζΩ(ζ)

)2
. (2.71)

Thus (2.69) simplifies to

Re (−2iζω1 + 2τ (ζw(α)ω1 − ζw(ω1)α)) = 0, (2.72)

where τ = sgn (Re (−K1 + 4ζ3 − 2ζω − 4iζΩ(ζ))) .

Under the mapping (2.29), and applying the formula for the Weierstrass ζ function eval-

uated at a half period [17], ζw(ω1) =
√
e1 − e3

(
E(k)− e1

e1−e3K(k)
)
, (2.72) becomes

Re

[
−2iζK(k) + 2τ

(
ζw(α)K(k)−

(
E(k)− 1

3

(
2− k2

)
K(k)

)
α

)]
= 0. (2.73)

Here

E(k) =

∫ π/2

0

√
1− k2 sin2 ydy, (2.74)

is the complete elliptic integral of the second kind. At this point, we have simplified the

integral condition (2.64) as much as possible. Thus ζ ∈ σL if and only if (2.73) is satisfied.

To simply notation, let

I(ζ) = −2iζω1 + 2τ (ζw(α)ω1 − ζw(ω1)α) , (2.75)

so that (2.73) is

Re [I(ζ)] = 0. (2.76)

Next, we wish to examine the level sets of the left-hand side of (2.76). To this end, we

differentiate I(ζ) with respect to ζ. To evaluate this derivative we use the chain rule and

note that

∂

∂ζ
ζw(α) = −℘(α)

∂α

∂ζ
=
C4(ζ)

C5(ζ)

d℘−1

dζ

(
−C4(ζ)

C5(ζ)
, g2, g3

)(
−C4(ζ)

C5(ζ)

)′
. (2.77)

Since
d

dz
℘−1

(
−C4(ζ)

C5(ζ)
, g2, g3

)
=

1

℘′
(
℘−1

(
−C4(ζ)
C5(ζ)

, g2, g3

)) =
1

℘′(α)
, (2.78)
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we can use (2.71) to obtain

dI(ζ)

dζ
=

2E(k)− (1 + b− k2 + 4ζ2)K(k)

2Ω(ζ)
. (2.79)

Simply taking the real part of (2.79) does not give another characterization of the spectrum.

Instead, if we think of (2.73) as restricting ourselves to the zero level set of the left-hand side.

Then we use (2.79) to determine a tangent vector field which allows us to map out level curves

originating from any point. This is explained in more detail in Section 2.8. Additionally,

there we see that (2.79) is useful in determining the boundary regions in parameter space

corresponding to qualitatively different parts of the spectrum.

2.7 The σL spectrum on the imaginary axis

In this section we discuss σL ∩ iR. As we demonstrate, this corresponds to the part of σL

lying on the real axis. Using (2.73) we obtain analytic expressions for σL ∩ R, and thus for

σL ∩ iR.

First, we consider ζ ∈ R. As we demonstrate below, (2.73) is satisfied for any real ζ.

Using (2.63) and (2.61), we determine the corresponding parts of σL.

Theorem 2.7.1. The condition (2.73) is satisfied for all ζ ∈ R.

Proof. Since k, K(k), and E(k) are real, it suffices to show that α ∈ iR and ζw(α) ∈ iR.

Since ζw with g2, g3 ∈ R takes real values to real values and purely imaginary values to

purely imaginary values [55], it suffices to show that α = ℘−1
(
−C4(ζ)
C5(ζ)

, g2, g3

)
∈ iR. For

g2, g3 ∈ R, ℘(R, g2, g3) maps to [e1,∞), and since ℘(ix, g2, g3) = −℘(x, g2,−g3) we have that

℘(iR, g2, g3) maps to (−∞, e3]. Thus we need to show that ζ, −C4(ζ)
C5(ζ)

≤ e3. Substituting for

C4(ζ) and C5(ζ), we want to show

1

6

(
2ω − 12ζ2 − 3

√
1− 3b2 + k4 − 16cζ − 8ζ2 + 16ζ4 − 2k2 (1 + 4ζ2) + 2b (1 + k2 + 12ζ2)

)
≤ e3.

(2.80)

Simplifying the left- and right- hand sides of this expression yields

4ζ2 +

√
(1 + k2 − b− 4ζ2)2 + 4

(
2
√
bζ −

√
(1− b)(b− k2)

)2

≥ 1 + k2 − b. (2.81)
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There are two cases. If 4ζ2 ≥ 1 + k2− b we are done, as the square root term is nonnegative.

If 4ζ2 < 1 + k2 − b, we have

4ζ2 +

√
(1 + k2 − b− 4ζ2)2 + 4

(
2ζ
√
b−

√
(1− b)(b− k2)

)2

≥ 4ζ2 +

√
(1 + k2 − b− 4ζ2)2.

(2.82)

Since 1 + k2 − b− 4ζ2 > 0, this gives (2.81) as we wished to prove.

At this point, we know that R ⊂ σL. We wish to see what this corresponds to for σL.

Looking at (2.63), we notice that

Ω2 = − 1

16

((
1 + k2 − b− 4ζ2

)2
+ 4

(
2ζ
√
b−

√
(1− b)(b− k2)

)2
)
. (2.83)

For convenience define

SΩ =

{
Ω : Ω2 = − 1

16

((
1 + k2 − b− 4ζ2

)2
+ 4

(
2ζ
√
b−

√
(1− b)(b− k2)

)2
)

and ζ ∈ σL
}
.

(2.84)

Thus when ζ ∈ R, Ω(ζ) ∈ iR necessarily, since Ω2(ζ) < 0. Applying (2.61), we see that ζ ∈ R

corresponds to imaginary spectral elements of σL. Representative plots of Ω2 are shown in

Figure 2.3. The subset of SΩ corresponding to ζ ∈ R consists of (−∞,−i|Ωm|]∪ [i|Ωm|,∞) ,

where Ωm is the maximum value of Ω. The set SΩ is in general at least double covered as

for almost every value of Ω there are at least two values of ζ which map to it. The spectrum

on the imaginary axis is quadruple covered if the quartic (2.63) has four distinct real roots

ζ, as is the case in Figure 2.3(d) for Ω2 ∈ (−0.0639,−0.0243).

The condition for a subset of the spectrum to have a quadruple covering is readily deter-

mined. We require that the quartic Ω2(ζ) has three critical values, i.e., that its derivative

has three distinct roots. Examining the discriminant of (2.63) with respect to ζ, we see that

if

k2 < b <
1 + 3k2 + 3k4 + k6

9(1− k2 + k4)
, (2.85)

then there is a region of the imaginary axis which is quadruple covered. We show a plot of

parameter space separated into two distinct regions by this condition in Figure 2.4. In the
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Figure 2.3: Ω2 as a function of real ζ for various values of b and k: (a) cn case with
(k, b) = (0.2, 0.04); (b) dn case with (k, b) = (0.5, 1); (c) general nontrivial-phase case with
one maximum with (k, b) = (0.8, 0.8); (d) general nontrivial-phase case with two maxima
with (k, b) = (0.2, 0.05).
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Figure 2.4: Parameter space split using (2.85) in the region for which a subset of σL ∪ iR is
quadruple covered given by (2.85) (dark lower region), and only double covered (light upper
region). The lower region region comes to a point at (k, b) = (

√
2/2, 1/2).

upper region, the subset of σL on the imaginary axis has no quadruple covering. In the lower

region there is a quadruple covering.

To explicitly determine the location of the covering on the imaginary axis, we need the

local extrema of Ω2. In the case when (2.85) is satisfied, the three extrema Ω2
c of Ω2 satisfy

the cubic in Ω2
c

−16k4(−1 + k2)2 − 32
(
−4k2 + 32k4 − 4k6 + 27bg3

)
Ω2
c+

256(−1− 18b+ 27b2 + 10k2 − 18bk2 − k4)Ω4
c − 4096Ω6

c = 0.
(2.86)

Labeling the real roots as Ω2
c1, Ω2

c2, Ω2
c3, with Ω2

c1 < Ω2
c2 < Ω2

c3, we have that the σL spectrum

is double covered on the region
(
−i∞,−2

√
Ω2
c3

)
∪
(
−2
√

Ω2
c2,−2

√
Ω2
c1

)
∪
(

2
√

Ω2
c1, 2

√
Ω2
c2

)
∪(

2
√

Ω2
c3, i∞

)
, and quadruple covered on the region

(
−2
√

Ω2
c3,−2

√
Ω2
c2

)
∪
(

2
√

Ω2
c2, 2

√
Ω2
c3

)
.

If (2.85) is not satisfied, the σL spectrum has no quadruple covering, and is double covered

on the region
(
−i∞, 2

√
Ω2
c∗

)
∪
(

2
√

Ω2
c∗ , i∞

)
, where Ω2

c∗ is the only real root of (2.86).
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The extent of the spectrum σL on the imaginary axis vastly simplifies for the cnoidal

wave, the dnoidal wave, and the Stokes wave solutions because (2.63) is biquadratic in the

former two cases, and because k = 0 in the latter case. We detail these boundary cases

below giving the σL spectrum. For dn solutions, the imaginary axis is double covered on

the region (−i∞,−ik2/2)∪ (ik2/2, i∞) . This confirms results in [24,48]. For cn solutions, if

k <
√

2/2, the imaginary axis is double covered from (−i∞,−i/2)∪(i/2, i∞) , and quadruple

covered from
(
−i/2,−ik

√
1− k2

)
∪
(
ik
√

1− k2, i/2
)
. Finally, for the Stokes wave solutions,

if b > 1/9, then iR ⊂ σL and is double covered. If b < 1/9, then the imaginary axis is still

fully double covered except from (−S+,−S−)∪ (S−, S+) , where it is quadruple covered, here

S± =

√
−1∓

√
(1− 9b)(1− b) + 9b

(
−2±

√
(1− 9b)(1− b) + 3b

)
2
√

2
. (2.87)

2.8 Qualitatively different parts of the spectrum

Up to this point we have discussed only the subset of σL that is on the imaginary axis. In

this section we discuss the rest of the spectrum. In general, for all choices of the parameters

b and k, a part of the spectrum σL is in the right-half plane (corresponding to unstable

modes). We split parameter space into five regions where σL \ iR is qualitatively different.

Here σL \ iR refers to the closure of σL not on the imaginary axis.

We refer to Figure 2.5, which shows (k, b) parameter space with curves that split it into

regions where σL \ iR spectrum is qualitatively different. The exact curves splitting up the

regions, as well as their derivations, are given below. In Figure 2.6(1) we show representative

plots of σL for the trivial-phase solutions on the boundary of parameter space, and in Figure

2.6(2) we show the corresponding σL spectrum. Additionally, we plot the ζ choices for which

Ω(ζ) ∈ iR. These curves are used to split up parameter space. The stability of trivial-phase

solutions has been well studied in the literature [24, 34, 42, 48]. The Stokes wave solutions

have constant magnitude and their stability problem has constant coefficients. Thus it is

significantly easier to analyze.
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Figure 2.5: A colored plot of parameter space with regions corresponding to different qual-
itative behavior in the linear stability spectrum. Regions I and II: two nested figure 8s;
region III: non-self-intersecting butterflies; region IV: self-intersecting butterflies; region V:
one triple-figure 8 inside of a figure 8.
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For the dn solutions, σL \ iR consists of a quadruple covered finite interval on the real

axis. For Stokes wave solutions σL \ iR consists of a single-covered figure 8, and σL \ iR for

cn solutions consists of a double covered figure 8. There are two cases for the cn solutions.

Either σL ∩ iR pierces the figure 8 (see Figure 2.6(1c)), or it does not (see Figure 2.6(1d)).

The exact value of k separating the closure of the regions is given below.

For these trivial-phase cases, much can be proven and quantified explicitly, i.e., not in

terms of special functions. Specifically, for the spectrum in the Stokes wave case we give a

parametric description for the figure 8 curve. For the spectrum for the dn case we calculate

the extent of the covering of σL ∩ iR. For the spectrum in the piercing cn case, we give an

explicit expression for where the top (or bottom) of the figure 8 crosses the imaginary axis.

Additionally, we have an explicit expression for the tangents to σL leaving the origin in both

cn cases. In fact, we are able to approximate the spectrum at the origin using a Taylor series

to arbitrary order. These series give a good approximation to the greatest real part of the

figure 8 using only a few terms.

In the interior of parameter space we examine the nontrivial-phase solutions. Four cases

appear and plots of the σL spectrum for representative choices of k and b are seen in Figure

2.7. The cases are as follows

(2.7-1a) σL \ iR consists of two single-covered figure 8s, resulting in the degenerate double

covered case of σL \ iR for cn solutions.

(2.7-1b) We have a single-covered non-self-intersecting butterfly. As b → 1 the wings of this

butterfly collapse to the real axis and the spectrum for dn solutions is seen with a

quadruple covering on the real axis.

(2.7-1c) σL \ iR is a single-covered triple-figure 8 inside of a single-covered figure 8.

(2.7-1d) σL \ iR consists of a single-covered self-intersecting butterfly, which is seen as a per-

turbation of σL \ iR for the cn solutions as the double covered figure 8 splits apart

horizontally.
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Figure 2.6: (1) σL for the trivial-phase cases and (2) the corresponding σL spectra (solid
lines), values for which Re (Ω(ζ)) = 0 (dotted). In (1), color corresponds to region in
Figure 2.5 and thickness of curves corresponds to single, double, or quadruple covering going
from thinnest to thickest. (a) Stokes wave solution, regions I and II, (k, b) = (0, 0.08); (b)
dn solution, region III, (k, b) = (0.9, 1); (c) cn solution with piercing, region I, (k, b) =
(0.65, 0.4225); (d) cn solution without piercing, region IV, (k, b) = (0.95, 0.9025).

In fact, there are two non-connected regions in parameter space for which we have two

single-covered figure 8s, but qualitatively the spectrum is the same so we do not show samples

from both regions.

For the nontrivial-phase case less can be determined explicitly. That said, we present

an explicit expression for the slope of the spectrum for any nontrivial-phase solution as it

leaves the origin. Since at least some of these slopes are finite, this settles the conjecture of

Rowlands [60] that all stationary solutions of (2.1) are unstable. Moreover, a Taylor series

expansion around the origin can be obtained for all cases and it well approximates the largest

real part with a small number of terms. Additionally, explicit expressions for the tops (or

bottoms) of the figure 8s in both cases with figure 8s are given.
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A starting point for solving (2.73) for ζ is to recognize that if ζ satisfies Ω2(ζ) = 0, then

ζ must satisfy (2.73). This is due to the fact that the origin is always included in σL and

hence in SΩ. In fact, the four roots of the quartic Ω2 = 0 corresponds to the fact that 0 ∈ σL
with multiplicity four. This is seen from the symmetries of (2.1) and by applying Noether’s

Theorem [47,65].

It may be instructive to see this explicitly. In the general case, the roots of Ω2(ζ) are

ζc =

{√
1− b
2

± i
√
b−
√
b− k2

2
, −
√

1− b
2

± i
√
b+
√
b− k2

2

}
. (2.88)

These roots are seen in Figures 2.6-2.8 (bottom) as the intersections between the solid and

dotted lines lying off of the real axis. Indeed, as long as b, k > 0, these points have nonzero

imaginary part, and other ζ ∈ σL \ R can be found by following the level curves of (2.73)

originating from these points. For convenience we label these four roots ζ1, ζ2, ζ3, ζ4, where

the subscript corresponds to the quadrant on the real and imaginary plane the root is in.

To better examine this we look at the tangent vector field to the level curve (2.76). If we

let ζ = ζr + iζr, then

I(ζ) = I(ζr + iζi) = −2i(ζr + iζi)K(k)± 2

(
ζw(α)K(k)−

(
E(k)− 1

3

(
2− k2

)
K(k)

)
α

)
.

(2.89)

The level curve {ζ ∈ C : Re [I(ζ)] = 0} , is exactly the condition for ζ ∈ σL. Taking deriva-

tives with respect to ζr and ζi gives a normal vector field to the level curves of the general

condition Re [I(ζ)] = C for any constant C, specifically, the normal vector is given by(
dRe [I(ζr + iζi)]

dζr
,
dRe [I(ζr + iζi)]

dζi

)
.

Thus, the tangent vector field is(
−dRe [I(ζr + iζi)]

dζi
,
dRe [I(ζr + iζi)]

dζr

)
.

By applying the chain rule and using the fact that Re[iz] = −Im[z], we have that the tangent

vector field to the level curves is (
Im

[
dI

dζ

]
,Re

[
dI

dζ

])
.



28

-0.10 -0.05 0.05 0.10

-0.6

-0.4

-0.2

0.2

0.4

0.6

-0.4 -0.2 0.2 0.4

-0.6

-0.4

-0.2

0.2

0.4

0.6

-0.2 -0.1 0.1 0.2

-0.6

-0.4

-0.2

0.2

0.4

0.6

-0.2 -0.1 0.1 0.2

-0.6

-0.4

-0.2

0.2

0.4

0.6

(1a) (1b) (1c) (1d)

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

(2a) (2b) (2c) (2d)

Figure 2.7: (1) σL for the nontrivial-phase cases and (2) the corresponding σL spectra (solid
lines), values for which Re (Ω(ζ)) = 0 (dotted). In (1), color corresponds to region in
Figure 2.5. (a) Double-figure 8 solution, regions I and II, (k, b) = (0.65, 0.423); (b) non-
self-intersecting butterfly solution, region III, (k, b) = (0.9, 0.95); (c) triple-figure 8 solution,
region V, (k, b) = (0.89, 0.84); (d) self-intersecting butterfly solution, region IV, (k, b) =
(0.9, 0.85).
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Substituting this back into (2.79), the tangent vectors are(
Im

[
2E(k)− (1 + b− k2 + 4ζ2)K(k)

2Ω(ζ)

]
,Re

[
2E(k)− (1 + b− k2 + 4ζ2)K(k)

2Ω(ζ)

])
. (2.90)

Thus, given a point in the σL spectrum (lying on the 0 level curve of Re [I(ζ)]), we can follow

the tangent vector field to find other points in the σL spectrum.

2.8.1 Stokes wave case

Applying this idea to the Stokes wave case, we see that generically

ζc =

√
1− b
2

,

√
1− b
2

,−
√

1− b
2

± i
√
b,

i.e., there is a double root on the real axis and two conjugate roots. Following level curves

we see that

∀ζi ∈ [−
√
b,
√
b], −

√
1− b
2

+ iζi ∈ σL. (2.91)

Substituting this into (2.63), we find that the σL spectrum for Stokes waves is given para-

metrically as a single-covered figure 8:

λ = ±
(

2
√
bζ2
i − ζ4

i + 2i sgn(ζi)
√

(1− b)(b− ζ2
i )

)
for ζi ∈ [−

√
b,
√
b]. (2.92)

Plots of the σL and the σL spectra are seen in Figure 2.6(a) for k = 0, b = 0.08.

2.8.2 dn case

Similarly, in the dn case we find that[
−1 +

√
1− k2

2
i,−1−

√
1− k2

2
i

]
∪
[

1−
√

1− k2

2
i,

1 +
√

1− k2

2
i

]
∈ σL, (2.93)

where [·, ·] corresponds to the straight line segment between its two endpoints. Mapping this

back to σL via (2.63), we find that there is a quadruple covering of the real axis[
−
√

1− k2,
√

1− k2
]
∈ σL. (2.94)

Representative plots of these spectrum are seen in Figure 2.6(b). This corrects a typo in [48],

and confirms the conjecture made in [24].



30

2.8.3 cn case

For the cn case, less is known explicitly. Representative plots of the σL spectrum are shown

in Figure 2.6(2c,2d). In both cases we have a quadrafold symmetry. The distinguishing

factor between the two cases in (c) and (d) is whether or not σL \ R leaving ζc crosses the

real axis or the imaginary axis. Examining (2.90) on the real axis we can determine the

condition for a vertical tangent to occur. This happens when

ζ = ±
√

2E(k)−K(k)

2
√
K(k)

. (2.95)

Equating ζ = 0, we solve for k such that the vertical tangent occurs at the origin. With

2E(k∗)−K(k∗) = 0, we find that k∗ ≈ 0.908909. This gives two cases: if k < k∗ then σL \ R

crosses the real axis, and if k > k∗ then σL \ R crosses the imaginary axis. When k < k∗ we

know the crossing of the real axis occurs when ζ satisfies (2.95). Mapping this back to σL,

we see that this point corresponds to the top (or bottom) of the figure 8

λ = ±i
√

(1− k2)K2(k)− 2(1− k2)E(k)K(k) + E2(k)

K(k)
. (2.96)

For all k < k∗ the figure 8 is pierced by the covering on the imaginary axis as seen in Figure

2.6(1c), but as k → k∗, (2.96) approaches ±i/2 which is the extent of the covering on the

imaginary axis as seen in Section 2.7. Thus for k > k∗, the figure 8 is no longer pierced by

σL ∩ iR, as is the case in Figure 2.6(1d).

2.8.4 Nontrival-phase cases

Plots of generic cases of the σL spectrum are seen in Figure 2.7(2a-d). The idea of whether

σL \ R crosses the real or imaginary axis still applies. The same analysis as above yields

conditions on when ζ crosses the real axis. We find that when

ζ = ±
√

2E(k)−K(k)− (b− k2)K(k)

2
√
K(k)

, (2.97)
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σL \ R crosses the real axis. Mapping this back to σL, this corresponds to the top (or bottom)

of the outside figure 8:

λ = ±i

√√√√ E2(k)

K2(k)
− 2(1− b) E(k)

K(k)
+ (1− 2b2 − k2 + 2bk2) + 2c

√
2
E(k)

K(k)
+ k2 − b− 1, (2.98)

and the top (or bottom) of the enclosed figure 8 (or triple-figure 8):

λ = ±i

√√√√ E2(k)

K2(k)
− 2(1− b) E(k)

K(k)
+ (1− 2b2 − k2 + 2bk2)− 2c

√
2
E(k)

K(k)
+ k2 − b− 1. (2.99)

We note that ζ < 0 in (2.97) corresponds to the top (or bottom) of the outside figure 8

in (2.98), while ζ > 0 in (2.97) corresponds to the top (or bottom) of the enclosed figure 8

in (2.99). This is difficult to show directly, but is seen from the more general result that for

any ζ ∈ R, Ω2(−|ζ|) > Ω2(|ζ|), which is derived directly from (2.83).

Equating ζ = 0 in (2.97) gives the condition for differentiating between figure 8’s and

butterflies:

b = −1 + k2 +
2E(k)

K(k)
. (2.100)

If b is less than this value the spectrum looks like in Figure 2.7(1a or 1c), and if b is greater

than this value the spectrum looks like in Figure 2.7(1b or 1d). In Figure 2.8(a) we show

the case when (2.100) is exactly satisfied.

Next we examine the slopes of the σL curves at the origin. Because σL = 2SΩ it suffices

to examine the slopes for the set SΩ. We let Ω = Ωr + iΩi, and we consider ζi as a function

of ζr so that Ω (ζr, ζi(ζr)). Applying the chain rule we have that the slope at any point in

the set SΩ is

dΩi

dΩr

=
dΩi/dζr
dΩr/dζr

=

dΩi

dζr
+ dΩi

dζi
dζi
dζr

dΩr

dζr
+ dΩr

dζi
dζi
dζr

, (2.101)

where

dζi
dζr

= −dRe(I)/dζr
dRe(I)/dζi

. (2.102)
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Figure 2.8: (1) σL for the cases separating regions and (2) the corresponding σL spectra
(solid lines), values for which Re (Ω(ζ)) = 0 (dotted). In (1), color corresponds to location
in Figure 2.5. (a) Split between figure 8s and butterflies, (k, b) = (0.75, 0.942384); (b) split
between self-intersecting and non-self-intersecting butterflies, (k, b) = (0.95, 0.929542); (c)
lower split between figure 8 and triple-figure 8, (k, b) = (0.9, 0.821993); (d) four-corners
point, (k, b) = (0.876430, 0.863399).
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We examine (2.101) near where Ω = 0 and ζ = ζc. The slopes around the origin are

dΩi

dΩr

= ±

(
2
√
b(1− b)(b− k2) +

√
1− b(k2 − 2b)

)
E(k)(√

b− k2 −
√
b
)((

b− 1−
√
b(b− k2)

)
E(k) + (1− k2)K(k)

) , (2.103)

dΩi

dΩr

= ±

(
2
√
b(1− b)(b− k2)−

√
1− b(k2 − 2b)

)
E(k)(√

b− k2 +
√
b
)(
−
(
b− 1−

√
b(b− k2)

)
E(k) + (1− k2)K(k)

) . (2.104)

In the cn case (b = k2) the slopes at the origin simplify to

dΩi

dΩr

= ± kE(k)√
1− k2(E(k)−K(k))

. (2.105)

For the cn solutions, these slopes are always finite. This is not necessarily the case for

nontrivial-phase solutions. Specifically, while the slopes in (2.104) are always finite, the

slopes in (2.103) can be infinite if(
b− 1−

√
b(b− k2)

)
E(k) + (1− k2)K(k) = 0. (2.106)

Spectra corresponding to solutions for which this condition is satisfied are shown in in Figure

2.8(b). The condition corresponds to the splitting between the two butterfly regions, as well

as the upper splitting between the triple-figure 8 and the figure 8s regions. See Figure 2.5.

Further application of the chain rule can yield expressions for derivatives around the origin

of any order, and the same technique can be applied around the top of the figure 8s. In

doing this we can obtain Taylor series approximations of σL to any order.

Finally, an expression is obtained for the lower boundary of the triple-figure 8s and figure

8s regions. A representative example of this case is seen in Figure 2.8(c). The boundary

between these regions occurs at the bifurcation when σL ∩ iR and σL \ iR have a threefold

intersection, see Figure 2.9(b). This occurs when

Rt(b,k) =

√
2E(k)−K(k)− bK(k) + k2K(k)

4K(k)
, (2.107)

where Rt(b,k) is the smallest real root of the cubic equation

−c+
(
−1 + 3b− k2

)
Y + 4Y 3 = 0. (2.108)
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Figure 2.9: (1) σL in the upper-half plane for a sequence of parameter values demon-
strating the boundaries of the triple-figure 8 region. (a) Two figure 8s, lower region,
(k, b) = (0.89, 0.8); (b) lower boundary of triple-figure 8 region, (k, b) = (0.895, 0.819747),
the enclosed figure 8 is not smooth at the top; (c) triple-figure 8 near lower boundary,
(k, b) = (0.895, 0.84); (d) triple-figure 8 near upper boundary, (k, b) = (0.887, 0.85); (e) up-
per boundary of the triple-figure 8 region, (k, b) = (0.875, 0.862349); (f) Two figure 8s, upper
region, (k, b) = (0.86, 0.87).

This is seen directly as the left-hand side of (2.107) gives the point when Re(Ω) = 0 intersects

the real axis and the right-hand side is (2.97), the point where σL \ R intersects the real axis.

In Figure 2.9, we plot σL ∩C+. In C+ there are two lobes to the triple-figure 8, one near

the origin and one away from the origin, see Figure 2.9(c,d). For triple-figure 8s near the

lower boundary of the region as in Figure 2.9(c), the lobe of σL \ iR near the origin is larger

than the lobe away from the origin. In contrast, for triple-figure 8s near the upper boundary

of the region, see Figure 2.9(d), the lobe of σL \ iR away from the origin is larger.

We also mention the four curves of σL \ iR near the origin which we label i, ii, iii and iv in

Figure 2.9. These curves give a distinguishing feature between regions I and II in Figure 2.5
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both with two figure 8s. Specifically, the curves iii and iv of σL \ iR for the enclosed figure

8 near the origin switch places. This is seen from examining the slopes of these curves in

(2.103) and also by comparing the relative positions of curves c and d in Figure 2.9(a) and

Figure 2.9(f).

Lastly, we mention the four-corners point seen in Figure 2.8(d). This point occurs at the

intersection of (2.100) and (2.106), the intersection of all four nontrivial-phase regions. At

this point, σL \ iR has vertical tangents at the origin as well as a four-way intersection point

on the imaginary axis corresponding to ζ = 0 in σL.

2.9 Floquet theory and subharmonic perturbations

We examine σL using a Floquet parameter description. We use this to prove some spectral

stability results with respect to perturbations of an integer multiple of the fundamental

period of the solution, i.e., subharmonic perturbations.

Note that the solutions to the stationary problem (2.3) are not periodic in general, as

they may have a nontrivial phase. On the other hand, (2.39) is a spectral problem with

periodic coefficients since it depends only on R(x).

We write the eigenfunctions from (2.39) using a Floquet-Bloch decomposition U(x)

V (x)

 = eiµx

 Û(x)

V̂ (x)

 , Û (x+ T (k)) = Û(x), V̂ (x+ T (k)) = V̂ (x). (2.109)

with µ ∈ [−π/T (k), π/T (k)) [12, 24]. Here T (k) = 2K(k) for all solutions, except T (k) =

4K(k) for the cn solution. From Floquet’s Theorem [24], all bounded solutions of (2.39) are

of this form, and our analysis includes perturbations of an arbitrary period. Specifically,

µ = 2mπ/T (k) for m ∈ Z corresponds to perturbations of the same period T (k) of our

solutions, and in general,

µ =
2mπ

PT (k)
, m, P ∈ Z, (2.110)

corresponds to perturbations of period PT (k). The choice of the specific range of µ is

arbitrary, as long as it is of length 2π/T (k). For added clarity in this section, we plot some
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figures using the larger range [−2π/T (k), 2π/T (k)) , before modding out, reducing the µ

interval to [−π/T (k), π/T (k)) .

In the previous sections σL is parameterized in terms of ζ. We wish to parameterize σL

in terms of µ. We examine the U eigenfunction from (2.109). From the periodicity of Û we

have

eiµT (k) =
U(x+ T (k))

U(x)
. (2.111)

Using (2.62), (2.56), and (2.57), we have

eiµT (k) = exp

(
−2

∫ T (k)

0

(A(x)− Ω)φ+Bx(x) + iζB(x)

B(x)
dx

)
exp (iθ(T (k))) , (2.112)

where we have used the periodicity properties

A (x+ T (k)) = A(x), B (x+ T (k)) = B(x)eiθ(T (k)), θ (x+ T (k)) = θ(x) + θ (T (k)) .

(2.113)

Using (2.73),

µ(ζ) =
2iI(ζ)

T (k)
+
θ (T (k))

T (k)
+

2πn

T (k)
, (2.114)

where I(ζ) is given in (2.89), n ∈ Z, and

θ(T (k)) =


∫ T (k)

0

√
b(1−b)(b−k2)

b−k2sn2(y,k)
dy, if b > k2,

π, if b = k2,

(2.115)

from (2.7). Equation (2.114) relates the two spectral parameters ζ and µ.

In what follows we discuss the stability of solutions with respect to perturbations of

integer multiples of their fundamental periods, so-called subharmonic perturbations [39].

The expression (2.114) gives an easy way to do this. Specifically, from (2.110) we know

which values of µ correspond to perturbations of what type. For stability, we need all

spectral elements associated with a given µ value to have zero real part. In Figure 2.10 we

plot the real part of σL as a function of µT (k) using (2.61), (2.63), and (2.114). We rescale
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Figure 2.10: The real part of the spectrum Re(λ) (vertical axis) as a function of µT (k)
(horizontal axis). T (k)µ = 2mπ/P for integers m and P corresponds to perturbations of
period P times the period of the underlying solution. (a) Stokes wave solution, (k, b) =
(0, 0.08); (b) Stokes wave solution, (k, b) = (0, 0.9); (c) dn solution, (k, b) = (0.9, 1); (d)
cn solution, (k, b) = (0.65, 0.4225); (e) cn solution, (k, b) = (0.95, 0.9025); (f) triple-figure 8
solution, (k, b) = (0.89, 0.84); (g) non-self-intersecting butterfly solution, (k, b) = (0.9, 0.95);
(h) self-intersecting butterfly solution, (k, b) = (0.9, 0.85).
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µ by the fundamental period T (k) for consistency in our figures. Specifically,

µT (k) =
2πm

P
,

corresponds to perturbations of PT (k) for any integer n. In what follows, we omit σL ∩ iR.

2.9.1 Stokes wave case

We begin with the spectrum for Stokes waves (see Figures 2.10(a,b)). After simplification,

µT (k) = −2πsgn(s)
√
b− s2 + 2πn, (2.116)

Re(λ) = ±2
√
bs2 − s4, (2.117)

for s ∈ [−
√
b,
√
b] and n ∈ Z. Qualitatively, for any value of n, the parametric plot of Re (σL)

as a function of µT (k) looks like a figure 8 on its side. Specifically, The figure 8 is centered

at (2πn, 0) and extends left and right to (2πn± 2π
√
b, 0), with non-zero values in between,

see Figures 2.10(a,b). This leads to the following theorem:

Theorem 2.9.1. For any positive integer P , Stokes wave solutions to (2.1) with b ≤ 1/P 2

are stable with respect to perturbations of period Pπ.

Proof. First, T (k) = T (0) = π. Let P ∈ N0. For stability with respect to perturbations

of period PT (k) we need that for µT (k) = 2πm
P
, the spectral elements λ ∈ σL have zero

real part, i.e., for µT (k) = 0, 2π
P
, . . . , 2π(P−1)

P
, Re(λ) = 0. From (2.116), µT (k) = 0 only

when s = ±
√
b, which corresponds to Re(λ) = 0 from (2.117). Thus it suffices to consider

µT (k) = 2π
P
, . . . , 2π(P−1)

P
. Qualitatively, we have figure 8s centered at µT (k) = 2πn extending

over [2πn−2π
√
b, 2πn+2π

√
b]. Specifically, as s ranges from −

√
b to 0, µT (k) monotonically

increases from 2πn to 2π(n+
√
b). Over the same range, |Re(λ)| increases from 0 (at s = −

√
b)

to b (at s = −
√
b/2) then decreases back down to 0 (at s = 0) mapping out the right-half of

the figure 8. For s ∈ (0,
√
b), the left-half of the figure 8 is produced symmetrically. Relevant

to the interval [0, 2π) are the figure 8s centered at 0 and 2π. If the right-most edge of the

figure 8 centered at µT (k) = 0 is less than 2π/P and the left most edge of the figure 8
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centered at µT (k) = 2π is greater than 2π(P − 1)/P, then the real part of the spectrum at

µT (k) = 2π
P
, . . . , 2π(P−1)

P
is zero. These conditions are

2π
√
b ≤ 2π

P
and 2π − 2π

√
b ≥ 2π(P − 1)

P
. (2.118)

Simplifying both conditions gives 0 ≤ b ≤ 1/P 2, completing the proof.

For more intuition about this result, one can examine Figure 2.10. In Figure 2.10(a),

b = 0.08. Here b < 1/P 2 for P = 1, 2, 3 so this Stokes wave solution is stable with respect

to perturbations of periods π, 2π, 3π. This is readily seen in Figure 2.10(a) where the figure

8 centered at the origin extends to µT (k) = ±2π
√

0.08 ≈ 0.567π, so Re(λ) = 0 when

µT (k) = 0, 2π/3, π, 4π/3, 2π. In Figure 2.10(b), b < 1/P 2 only for P = 1, so the Stokes wave

solution is only stable with respect to perturbations of the fundamental period π. Indeed,

the figure 8 centered at the origin extends to µT (k) = ±2π
√

0.9 ≈ 1.90π, so Re(λ) = 0 only

for µT (k) = 0.

In order to proceed with results for the dn, cn, and general nontrivial-phase solutions we

provide the following useful lemma:

Lemma 2.9.2. For any analytic function f(z) = u(x, y) + iv(x, y), on a contour where

u(x, y) = constant, v(x, y) is strictly monotone, provided the contour does not traverse a

saddle point.

Proof. This is an immediate consequence of the Cauchy-Riemann relations [10].

Thus along contours where Re(I(ζ)) = 0, if there are no saddle points, then Im(I(ζ)) is

monotone. If we fix b and k, using (2.114) we see that µ(ζ) is also monotone along curves

with Re(ζ) = 0.

2.9.2 dn case

A representative plot of µT (k) vs Re(λ) for a dn solution is shown in Figure 2.10c. We prove

the following theorem:
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Theorem 2.9.3. The dn solutions to (2.1) are stable with respect to co-periodic perturba-

tions, but not to subharmonic perturbations.

Proof. It suffices to consider values of ζ in the range given by (2.93), as these are the only ζ

which correspond to λ with positive real part. We can limit our study to

ζ ∈
[

1−
√

1− k2

2
i,

1 +
√

1− k2

2
i

]
:= [ζb, ζt] ,

as ζ with negative imaginary part correspond to symmetric values of µT (k). For ζ = ζt,

µT (k) = 0, and Re(λ) = 0. Similarly, for ζ = ζb, µT (k) = 2π, and Re(λ) = 0. From Lemma

2.9.2 we know that µT (k) increases monotonically as ζ ranges from ζt to ζb, and since

Re(λ(ζ)) > 0 in that range we have that some ζ in the range will correspond to a λ with

positive real part. Hence, dn solutions are unstable with respect to perturbations other than

their fundamental period. Additionally, since ζt and ζb are the only values of ζ corresponding

to µT (k) = 2πn we have that dn solutions are stable with respect to perturbations of their

fundamental period.

2.9.3 cn case

Note that T (k) = 4K(k) for cn solutions.

Theorem 2.9.4. The cn solutions with k < k∗ are stable with respect to perturbations of

period PT (k), if they satisfy the condition:

π − 2iI(−ζt) ≤
2π

P
, (2.119)

for

ζt =

√
2E(k)−K(k)

2
√
K(k)

. (2.120)

Proof. We examine ζ ∈ σL that satisfy (2.73), see Figure 2.6(2c). The figure 8 spectrum is

double covered, so without loss of generality, we consider only values of ζ in the left-half plane.

Specifically we consider values of ζ ranging from ζ− = −
√

1−k2
2
− k

2
i to ζ+ =

√
1−k2
2
− k

2
i passing
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along the level curve through ζ = −ζt. At ζ−, µT (k) = 0 and Re(λ) = 0. As ζ moves from ζ−

to −ζt, µT (k) monotonically increases (Lemma 2.9.2) until it reaches µtT (k) = π− 2iI(−ζt)

at ζ = −ζt. At −ζt, Re(λ) = 0. Note that we are only considering the lower-left quarter

plane. The analysis for ζ ranging from ζ+ to ζt is symmetric in µT (k).

The only values of ζ which have Re(λ) > 0 are within the ranges [2πn − µt, 2πn + µt].

As in Theorem 2.9.1, relevant to the interval [0, 2π) are the figure 8s centered at 0 and 2π.

For stability the right-most edge of the figure 8 centered at µT (k) = 0 needs to be less than

2π/P and the left-most edge of the figure 8 centered at µT (k) = 2π to be greater than

2π(P − 1)/P. These conditions are

µt ≤
2π

P
and 2π − µt ≥

2π(P − 1)

P
, (2.121)

which are the same conditions as (2.119).

Theorem 2.9.5. The cn solutions with k > k∗ are stable with respect to perturbations of

period T (k) and period 2T (k).

Proof. We examine ζ ∈ σL that satisfy (2.73), see Figure 2.6 (2d). Similar to the proof of

Theorem 2.9.4 we consider ζ in the lower-left quarter plane only. The parameter ζ ranges

from ζ3 to ζt with ζt ∈ iR. At ζ3, µT (k) = 0, and Re(λ) = 0. As ζ moves to ζt, we know that

µT (k) increases monotonically (Lemma 2.9.2) until it reaches ζt. We do not know explicitly

where on the imaginary axis ζt is, but it satisfies (2.73). For any ζ on the imaginary axis, we

can compute directly µT (k) = π, Re(λ) = 0. Thus the figure 8 centered at µT (k) = 0 extends

outward to µT (k) = π. Similarly, using symmetries, the figure 8 centered at µT (k) = 2π

extends backward to µT (k) = π, see Figure 2.10(e). Both figure 8s have Re(λ) = 0 at

µT (k) = 0 and µT (k) = π, so we have stability with respect to perturbations of periods

2T (k) and T (k).

2.9.4 Nontrivial-phases cases

Theorem 2.9.6. Nontrivial-phase solutions in the figure 8s region and the triple-figure 8

region are stable with respect to subharmonic perturbations of period PT (k) if they satisfy
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the condition

θ(T (k))− 2iI(−ζt) ≤
2π

P
, (2.122)

with

ζt =

√
2E(k)−K(k)− (b− k2)K(k)

2
√
K(k)

. (2.123)

Proof. We examine ζ ∈ σL which satisfy (2.73), see Figure 2.7(2a,2c). Recall that ζi cor-

responds to the root of Ω2(ζ) in the ith quadrant from (2.88). The ζ spectrum has three

components which we examine separately:

1. ζ strictly real, corresponding to σL ∩ iR.

ζ strictly real corresponds to λ strictly imaginary, so these values do not need to be

examined further.

2. ζ ranging between ζ3 and ζ2, corresponding to the outside figure 8.

For ζ ranging between ζ3 and ζ2 we follow identical steps from the proof of Theorem

2.9.4. Taking the right-most edge of the outside figure 8 centered at µT (k) = 0 to be

less than 2π/P and the left-most edge of the outside figure 8 centered at µT (k) = 2π

to be greater than 2π(P − 1)/P, we arrive at analogous conditions to (2.121) which

reduce to (2.123) as desired. Note that we have shown only that (2.123) is a necessary

condition.

3. ζ ranging between ζ4 and ζ1, corresponding to the enclosed figure 8 or the triple-figure

8.

For ζ ranging between ζ4 and ζ1, we know from Section 2.8 that this corresponds to the

enclosed figure 8 (or triple-figure 8). Specifically, the top of this figure 8 (or triple-figure

8) is lower than the top of the other figure 8. It suffices to show that the extent of this

figure 8 (or triple-figure 8) in µT (k) is less than that of the larger figure 8. Indeed, if

the enclosed figure 8 (or triple-figure 8) extends less in µT (k) than the larger figure 8

does, then the stability bounds above are sufficient.
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Figure 2.11: A plot of parameter space showing the spectral stability of solutions with respect
to various subharmonic perturbations. Lightest blue or darker (entire region): solutions
stable with respect to perturbations of the fundamental period. Second lightest blue or
darker: solutions stable with respect to perturbations of two times the fundamental period.
Third lightest blue or darker: solutions stable with respect to perturbations of three times
the fundamental period. Etc.

It suffices to show that −2iI(ζt) < −2iI(−ζt). Let g(ζ) = −2iI(ζ). We know g(ζ) is a

real-valued function with real coefficients for ζ ∈ R. Furthermore, from (2.79),

dg(ζ)

dζ
=

2E(k)− (1 + b− k2 + 4ζ2)K(k)

iΩ(ζ)
. (2.124)

The only roots of dg(ζ)/dζ are ζ = ±ζt. By checking d2g(ζ)/dζ2 we see that g(ζt) is

a local minimum and g(−ζt) is a local maximum. Since there are no other extrema,

g(−ζt) > g(ζt) and (2.123) is a sufficient condition.

Theorem 2.9.7. Nontrivial-phase solutions of butterfly type are stable with respect to per-

turbations of the fundamental period.
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Proof. We examine ζ ∈ σL satisfying (2.73), see Figure 2.7(2b,2d). The ζ spectrum consists

of three components:

1. ζ strictly real, corresponding to σL ⊂ iR.

2. ζ ranging between ζ3 and ζ4, corresponding to two of the butterfly wings.

3. ζ ranging between ζ2 and ζ1, corresponding to the other two butterfly wings.

Case 1 consists only of values of ζ corresponding to λ with zero real part so it need not

be examined. Cases 2 and 3 are symmetric in µ so it suffices to look at case 2. With

ζ = ζ3, µT (k) = 0 with Re(λ) = 0. Then, from Lemma 2.9.2, µT (k) increases monotonically

as ζ varies from ζ3 to ζ4. At ζ = ζ4, µT (k) = 2π, with Re(λ) = 0. Because of the

monotone increase in µT (k), ζ3 and ζ4 are the only possible values of ζ which correspond

to µT (k) = 0, 2π. Since Re(λ) = 0 for both of these values of ζ, we have stability for

perturbations of period T (k) as desired.

The above results are summarized in Figure 2.11 where we plot the different regions

of parameter space corresponding to spectral stability with respect to different classes of

subharmonic perturbations.

2.10 Approximating the greatest real part of the spectrum

In this section we find an approximation to the value of the spectral element σmax ∈ σL with

greatest real part. This value is significant because it corresponds to the eigenfunction with

the fastest growth rate. For the Stokes wave case and for the dn solution case Re(σmax)

is known explicitly, so in this section we focus on approximating σmax for the cn solutions

and nontrivial-phase solutions. In the Stokes wave case Re(σmax) = b. This is seen from

maximizing the real component of (2.92). For the dn solution case, from (2.94) we know

that the spectrum extends to Re(σmax) =
√

1− k2.
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From (2.101) and (2.102) we have an expression for the slope at any point in the set SΩ.

σmax occurs when the slope at that point is infinity, i.e., when the denominator in (3.108) is

identically zero:
dΩr

dζr
+

dΩr

dζi

dζi
dζr

= 0. (2.125)

To simplify this equation we note that the expressions for dΩr/dζr and dΩrdζi are found

using (2.83) by substituting in Ω = Ωr + iΩi and ζ = ζr + iζi, taking real and imaginary

parts, and differentiating with respect to ζr and ζi. For the expression dζi/dζr we use (3.109)

and the fact that
dRe(I)

dζr
= Re

[
dI

dζ

]
, (2.126)

dRe(I)

dζi
= −Im

[
dI

dζ

]
, (2.127)

from Section 2.8. Using (2.79), we find the real and imaginary components of dI/dζ as

Re

[
dI

dζ

]
=

2E(k)Ωr +K(k) (−8ζiζrΩi − (1 + b− k2 + 4ζ2
r − 4ζ2

i ) Ωr)

2 (Ω2
i + Ω2

r)
, (2.128)

Im

[
dI

dζ

]
= −2E(k)Ωi −K(k) (−8ζiζrΩr + (1 + b− k2 + 4ζ2

r − 4ζ2
i ) Ωi)

2 (Ω2
i + Ω2

r)
, (2.129)

Using (2.83), (2.128), and (2.129) we simplify (2.125):

(− 1 + 3b2 + k4 + 16ζ4
i − 2b

(
−1 + 2k2 + 8ζ2

i

)
+ 8cζr + 16ζ2

r + 32ζ2
i ζ

2
r + 16ζ4

r + 8k2(ζ2
i − ζ2

r ))K(k)

+
(
2− 6b+ 2k2 + 8ζ2

i − 24ζ2
r

)
E(k) = 0.

(2.130)

This equation gives a condition on the real and imaginary parts of ζ. By construction, if

(2.130) and (2.73) are satisfied, then ζ ∈ σL maps to σmax. We denote such ζ as ζmax. We

note that in the trivial-phase case, (2.130) is an equation for a conic section in the variables

ζ2
r and ζ2

i . In Figure 2.12 we plot values of (ζr, ζi) which satisfy (2.130) along with values of

ζ = ζr + iζi satisfying (2.73). The intersection of these curves gives ζmax.

By simultaneously solving (2.130) and (2.73) and substituting into (2.61) and (2.63) we

have an exact expression for σmax. For the rest of this section we generate series expansions
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Figure 2.12: The σL spectrum (black) along with the curve corresponding to greatest real part
of the σL spectrum (orange) satisfying (2.130). (a) Stokes wave solution, (k, b) = (0, 0.08);
(b) dn solution, (k, b) = (0.9, 1); (c) cn solution with piercing, (k, b) = (0.65, 0.4225); (d)
cn solution without piercing, (k, b) = (0.95, 0.9025); (e) double-figure 8 solution, (k, b) =
(0.65, 0.423); (f) non-self-intersecting butterfly solution, (k, b) = (0.9, 0.95); (g) triple-figure
8 solution, (k, b) = (0.89, 0.84); (h) self-intersecting butterfly solution, (k, b) = (0.9, 0.85).
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for (2.73) and show that even using low-order approximations we are able to reproduce much

of the spectrum, including σmax.

From Section 2.8, we know a few points of σL explicitly. Because the functions we are

working with are analytic, we can perform series expansions around these explicitly known

points. The points we have explicit expressions for are ζc, i.e., the ζ corresponding to

λ = 0, and ζt, the ζ corresponding to the tops of the figure 8 or triple-figure 8. In what

follows we outline a procedure for finding an approximation to points in SΩ around these

explicitly known points. These expansions provide approximations to the set SΩ, and using

the mapping (2.61) and (2.63), results in approximations to the σL spectrum.

Procedure for finding a series approximation to ζ satisfying (2.73) around ζc:

1. Expand the expression inside the real part of (2.73) around ζc in a Puiseux series [30]

to give:

Re
(
(a1 + b1i)(ζ − ζc)1/2 + (a2 + b2i)(ζ − ζc)3/2 + (a3 + b3i)(ζ − ζc)5/2 + . . .

)
= 0,

(2.131)

where ai, bi ∈ R are the real and imaginary parts of the coefficients of the terms in the

Puiseux series.

2. Let

δ = δr + iδi = (ζ − ζc)1/2, (2.132)

for δr, δi ∈ R. Then (2.131) becomes

Re
(
(a1 + b1i)δ + (a2 + b2i)δ

3 + (a3 + b3i)δ
5 +O(δ7)

)
= 0. (2.133)

3. Near ζ = ζc, δ is small. Let δ = δr(δi) + iδi, with

δr(δi) = δ1δi + δ3δ
3
i + δ5δ

5
i +O(δ7

i ). (2.134)
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4. Substituting (2.134) into (2.133) and simplifying the expression on the left-hand side,

we equate powers of δi to solve for δ1, δ3, δ5, . . . sequentially. We find

δ1 =
b1

a1

, (2.135)

δ3 =
3a2

1a3b1 − a3b
3
1 − a3

1b3 + 3a1b
2
1b3

a4
1

, (2.136)

δ5 =
1

a7
1

(
a6

1b5 − a5
1(3a3b3 + 5a5b1) + a4

1b1

(
9a2

3 − 10b1b5 − 6b2
3

)
+ 10a3

1b
2
1(3a3b3 + a5b1)

+ a2
1b

3
1

(
−12a2

3 + 5b1b5 + 18b2
3

)
− a1b

4
1(15a3b3 + a5b1) + 3a2

3b
5
1

)
,

(2.137)

· · ·

5. Solving (2.132) for ζ results in an approximation for ζ as a function of δi in terms of

its real and imaginary parts:

ζ = δr(δi)
2 − δ2

i + Re(ζc) + (2δr(δi)δi + Im(ζc)) i. (2.138)

We call (2.138) an nth-order expansion where n is the largest power of ζi from (2.134)

included. For instance, a third-order expansion for ζ is

ζ =
(
δ1δi + δ3δ

3
i

)2 − δ2
i + Re(ζc) +

(
2
(
δ1δi + δ3δ

3
i

)
δi + Im(ζc)

)
i. (2.139)

First- and third-order approximations to (2.73) around ζc are shown in Figure 2.13 for the

two types of cn solutions. Although the expansion is only guaranteed to be valid around ζc,

the first-order expansion approximates σL well up to (and past) the point where σmax occurs.

With this in mind, we present Figure 2.14, comparing the exact value of the greatest real part

of the spectrum and the approximate value. From this figure, generally the approximation

performs better in the piercing case (k < k∗) than in the non-piercing case (k > k∗). Also,

with just the first-order approximation we get a maximum relative error of less than 18%.

For third-order, the maximum relative error is less than 1%, and for fifth-order this decreases

to less than 0.1%.
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Figure 2.13: Approximating the σL spectrum for cn solutions. Shown are the σL spectrum
(black solid curve), the curve corresponding to greatest real part of the σL spectrum (orange
solid curve), ζmax at the intersection point of the black and orange curves, the first-order
approximation to σL around ζ1 (light-blue dotted curve), third-order approximation to σL
around ζ1 (dark-blue dotted curve). (a) A cn solution with piercing, (k, b) = (0.65, 0.4225);
(b) cn solution without piercing, (k, b) = (0.95, 0.9025).
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Figure 2.14: (a) Comparison of the exact value for the greatest real part of σL for cn solutions
(black solid curve) with a first-order approximation (dark blue dotted curve) and a third-
order approximation (light blue dotted curve). (b) The relative error of the approximations:
|(approximation-exact)/exact|.

Using the approximations to σmax we can obtain an approximation to the eigenfunction

profile with the largest growth rate. This is achieved by substituting ζmax into (2.62) using

(2.56) and (2.57). The approximation for ζmax does not exactly satisfy (2.58) and in order

to find a bounded eigenfunction we subtract the left-hand side of (2.58) from the exponent

in (2.57). Indeed, with ζmax in Figure 2.13 the left-hand side of (2.58) is small in magnitude.

For example, when k = 0.65, the left-hand side of (2.58) is 0.0014 for the first-order approx-

imation and 0.00034 for the third-order approximation. These values should be compared

with 0.22 when ζ is chosen to correspond to a point in the middle of the figure 8.

In addition to expanding around ζc, we can also expand (2.73) around ζ = ζt, correspond-

ing to the top of the figure 8 or triple-figure 8. Note that we cannot do so if we are in the

butterfly region or in the cn region without piercing, thus we require

b+ 1− k2 − 2E(k)

K(k)
< 0. (2.140)

Since we are expanding around a point where the expression inside the real part of (2.73) is

analytic, we can use a Taylor series instead of a Puiseux series which vastly simplifies the

analysis.

Procedure for finding an approximation to ζ satisfying (2.73) around ζt:
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1. Expand the expression inside the real part of (2.73) around ζt in a Taylor series to give

Re
[
(a1 + b1i)(ζ − ζt) + (a2 + b2i)(ζ − ζt)2 + (a3 + b3i)(ζ − ζt)3 + . . .

]
= 0, (2.141)

where ai, bi ∈ R are the real and imaginary parts of the coefficients of the terms in the

Taylor series. In fact, all ai’s are identically zero, and b1 = 0 so that

Re
[
b2i(ζ − ζt)2 + b3i(ζ − ζt)3 + . . .

]
= 0. (2.142)

2. Let

δ = δr + iδi = ζ − ζt, (2.143)

for δr, δi ∈ R. Then (2.142) becomes

Re
[
b2iδ

2 + b3iδ
3 +O(δ4)

]
= 0. (2.144)

3. Near ζ = ζc, δ is small. Let δ = δr(δi) + δi, with

δr(δi) = δ1δi + δ2δ
2
i + δ3δ

3
i +O(δ4

i ). (2.145)

4. Substituting (2.145) into (2.144) and simplifying the expression on the left-hand side,

we equate powers of δi to solve for δ1, δ2, δ3, . . .. We find that δi = 0 for i odd and

δ2 =
b3

2b2

, (2.146)

δ4 =
−3b3

3 + 8b2b3b4 − 4b2
2b5

8b3
2

, (2.147)

δ6 =
9b5

3 − 40b2b4b
3
3 + 32b2

2b5b
2
3 + 32b2

2b
2
4b3 − 24b3

2b6b3 − 16b3
2b4b5 + 8b2r

4b7

16b5
2

, (2.148)

· · ·

5. Solving (2.143) for ζ we obtain an approximation for ζ as a function of δi in terms of

its real and imaginary parts:

ζ = (δr(δi) + ζt) + iδi. (2.149)
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Figure 2.15: Approximating σL for cn solutions around the top of the figure 8. Shown
are σL (black solid curve), the curve corresponding to the greatest real part of σL (or-
ange solid curve), the first-order approximation to σL around ζ1 (lightest-blue dotted
curve), third-order approximation to σL around ζ1 (light-blue dotted curve, fifth-order
approximation to σL around ζ1 (dark-blue dotted curve, seventh-order approximation to
σL around ζ1 (darkest-blue dotted curve). (a) A cn solution, (k, b) = (0.8, 0.64); (b) cn
solution, (k, b) = (0.85, 0.7225); (c) cn solution, (k, b) = (0.88, 0.7744); (d) cn solution,
(k, b) = (0.9, 0.81).

As before, call (2.149) an nth-order expansion where n is the largest power of ζi from

(2.145) included. For instance, a fourth-order approximation for ζ is

ζ =
(
δ2δ

2
i + δ4δ

4
i + ζt

)
+ iδi. (2.150)

The fourth-, sixth-, eighth-, and tenth-order approximations to (2.73) are shown in Figure

2.15 for piercing cn solutions as k approaches k∗. We see that these approximations quickly

diverge from the σL spectrum as k approaches k∗. The results here are shown for cn solutions

but hold in the nontrivial-phase case as well. For small values of k and b satisfying (2.140)

we are able to approximate σmax well using this Taylor series approach, but as the left-hand

side of (2.140) approaches 0 this approximation fails. In general, the Puiseux expansions

around ζc serve as more robust approximations than the Taylor expansions around ζt.

2.11 Conclusion

We obtained an analytical expression for the linear operator associated with focusing NLS.

The expression allowed us to obtain various quantitative and qualitative results about the
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spectrum. Specifically, we split the solution parameter space into four regions of distinct

qualitative behavior of the spectrum. Additionally, we found regions of parameter space for

which solutions are spectrally stable with respect to perturbations of a small integer multiple

of their fundamental period. We also provided a procedure for approximating the greatest

real part of the spectrum. The techniques used in this chapter may extend to other non

self adjoint problems and would be worthwhile investigating in future work. Regarding the

stability results in Section 2.9, it would be interesting to examine whether we have nonlinear

stability when one restricts oneself to subharmonic perturbations.
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Chapter 3

THE STABILITY SPECTRUM FOR ELLIPTIC SOLUTIONS
TO THE SINE-GORDON EQUATION

In this chapter, I present an analysis of the stability spectrum for all stationary periodic

solutions to the sine-Gordon equation. An analytical expression for the spectrum is given.

From this expression, various quantitative and qualitative results about the spectrum are

derived. Specifically, the solution parameter space is shown to be split into regions of distinct

qualitative behavior of the spectrum, in one of which the solutions are stable. Additional

results on the stability of solutions with respect to perturbations of an integer multiple of the

solution period are given. This chapter follows the same format as Chapter 2 and applies the

methods used there to the sine-Gordon equation. This chapter consists of work submitted

for publication and was done as a collaboration with Peter McGill at the University College

London [25].

3.1 Introduction

The sine-Gordon equation in laboratory coordinates is given by

utt − uxx + sinu = 0. (3.1)

Here, u(x, t) is a real-valued function. This equation was first introduced to study surfaces of

constant Gaussian curvature in light cone form [13]. Since its introduction it has appeared in

various applications including the description of the magnetic flux in long superconducting

Josephson junctions [59, 61, 63], the modeling of fermions in the Thirring model [20], the

study of the stability of structures found in galaxies [53, 66, 67], mechanical vibrations of a

ribbon pendulum [68], propagation of crystal dislocation [32], propagation of deformations
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along DNA double helix [72], among others. A comprehensive discussion of many of these

applications is found in the review paper by Barone [7].

We consider general traveling wave solutions to (3.1). Defining z = x − ct, τ = t, and

introducing v(z, τ) = u(x, t),

(c2 − 1)vzz − 2cvzτ + vττ + sin(v) = 0. (3.2)

For subsequent discussion we assume that c 6= 1. We proceed to look for stationary solutions

to (3.2) of the form

v(z, τ) = f(z), (3.3)

leading to

(c2 − 1)f ′′(z) + sin (f(z)) = 0, (3.4)

where ′ denotes a derivative with respect to z. Integrating once,

1

2
(c2 − 1)f ′(z)2 + 1− cos (f(z)) = E, (3.5)

where E is a constant of integration referred to as the total energy. The stationary solutions

in this chapter are the elliptic solutions to (3.5) and their limits. These solutions are periodic

in z and limit to the well-known kink solutions as their period goes to infinity [22,54].

We call stationary solutions f(z) with waves speeds satisfying c2 < 1 (respectively c2 > 1)

subluminal (superluminal). Representative phase portraits of subluminal and superluminal

solutions to (3.5) are shown in Figure 3.1. Additionally, we call solutions f(z) whose orbits

in phase space lie within the separatrix librational, and those whose orbits lie outside the

separatrix rotational. This distinction is illustrated in Figure 3.1 in both the subluminal and

superluminal cases. Librational waves correspond to E ∈ (0, 2). For rotational waves, E < 0

for subluminal waves and E > 2 for superluminal waves.

Scott [62] was the first to study the stability of periodic traveling wave solutions to

(3.1). He classified subluminal rotational waves as spectrally stable and determined spectral

instability for all other types of waves, but these instability results were based on an incorrect
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f'(z)

f(z)

f'(z)

(a) Subluminal: c2 < 1 (b) Superluminal: c2 > 1

Figure 3.1: Phase portraits of the solutions showing both librational waves (closed orbits
inside the separatrix) in yellow for (a) and green for (b) and rotational waves (orbits outside
the separatrix) in blue for (a) and red for (b). The separatrix is denoted in purple.

claim that the spectrum in all cases was strictly confined to the real and imaginary axes. His

proof has been corrected [45] and extended to the Klein-Gordon equation [46]. Using entirely

different methods, we confirm the results in [45] and explicitly characterize all of parameter

space. We also provide stability results for solutions perturbed by integer multiples of their

fundamental period.

In Section 3.2 we present the elliptic solutions to (3.5) in Jacobi elliptic form from [45],

and then reformulate the solutions into Weierstrass elliptic form. In Sections 3.3, 3.4 and 3.5,

using the same methods as [11,12,26,27], we exploit the integrability of (3.1) to associate the

spectrum of the linear stability problem with the Lax spectrum using the squared eigenfunc-

tion connection [1]. This allows us to obtain an analytical expression for the spectrum of the

operator associated with the linearization of (3.1) in the form of a condition on the real part

of an integral over one period of some integrand. Similar to [27], we proceed by integrating
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Figure 3.2: Subregions of Parameter space. Colors correspond to solutions in Figure 3.1.
Blue: subluminal rotational (0 ≤ |c|< 1, E < 0), orange: subluminal librational (0 ≤ |c|<
1, 0 < E ≤ 2), green: superluminal librational (|c|> 1, 0 ≤ E < 2), red: superluminal
rotational (0 ≤ |c|> 1, E > 2). Subregions extend to infinity in directions of arrows.
Subluminal kink solutions occur for E = 0, 0 ≤ |c|< 1, and superluminal kink solutions
occur for E = 2, |c|> 1.
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the integrand explicitly in Section 3.6. Next, using the expressions obtained, we prove re-

sults concerning the location of the stability spectrum on the imaginary axis in Section 3.7.

In Section 3.8, we present analytical results about the spectrum, and we make use of the

integral condition to split parameter space into different regions where the spectrum shows

qualitatively different behavior. Finally, in Section 3.9 we examine the spectral stability of

solutions with respect to perturbations of an integer multiple of their fundamental period

and prove various stability results.

3.2 Elliptic solutions

The derivation of the solutions is presented in the appendix of [45]. We limit our presentation

to what is necessary for the following sections. For solutions to be real and nonsingular for

real z we require the following constraints:

subluminal, rotational: 0 ≤ |c| < 1, E < 0, (3.6)

superluminal, rotational: |c| > 1, E > 2, (3.7)

subluminal, librational: 0 ≤ |c| < 1, 0 < E ≤ 2, (3.8)

superluminal, librational: |c| > 1, 0 < E ≤ 2. (3.9)

Solutions to (3.5) are of the form

cos (f(z)) = α + βsn2(λz, k), (3.10)

with the following parameter values for the various cases:

subluminal, rotational: α = −1, β = 2, λ =

√
2− E

2(1− c2)
, k =

√
2

2− E
, (3.11)

superluminal, rotational: α = 1, β = −2, λ =

√
E

2(c2 − 1)
, k =

√
2

E
, (3.12)

subluminal, librational: α = −1, β = 2− E, λ =

√
1

1− c2
, k =

√
2− E

2
, (3.13)

superluminal, librational: α = 1, β = −E, λ =

√
1

c2 − 1
, k =

√
E

2
. (3.14)
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Here sn(x, k) is the Jacobi elliptic sn function with elliptic modulus k [17,52,55,70]. We are

neglecting to include a horizontal shift in z. This additional parameter does not change the

qualitative results and it is not included here.

Of some importance are the limits of these solutions on the boundaries of their regions of

validity. On the boundaries for subluminal waves and superluminal waves the rotational and

librational solutions limit to kink solutions. For subluminal waves that limit occurs when

E = 0:

cos (f(z)) = −1 + 2 tanh2

(
z√

1− c2

)
, (3.15)

while for superluminal waves the limit is when E = 2:

cos (f(z)) = 1− 2 tanh2

(
z√
c2 − 1

)
. (3.16)

These solutions are seen as the separatices in Figure 3.1 in purple and are on the purple curves

in parameter space in Figure 3.2. The other limits for librational waves are when solutions

limit to a constant. In the subluminal cases this occurs when E = 2 and cos (f(z)) = −1,

or in the superluminal case when E = 0 and cos (f(z)) = 1. For a general solution which is

not on the boundary in parameter space, the solutions in (3.11-3.14) are periodic in z with

period 2K(k) where

K(k) =

∫ π/2

0

1√
1− k2 sin2 y

dy, (3.17)

the complete elliptic integral of the first kind.

We reformulate our elliptic solutions to (3.1) using Weierstrass elliptic functions [55]

rather than Jacobi elliptic functions. This will simplify working with the integral condition

(3.53) in Section 3.4, as formulas for integrating Weierstrass elliptic functions are well doc-

umented [17, 35]. It is important to note that nothing is lost by switching to Weierstrass

elliptic functions, as we can map any Weierstrass elliptic function to a Jacobi elliptic function,

and visa versa [27,55]. Let

℘(z + ω3, g2, g3)− e3 =

(
K(k)k

ω1

)2

sn2

(
K(k)z

ω1

, k

)
, (3.18)
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with g2 and g3 the lattice invariants of the Weierstrass ℘ function, e1, e2, and e3 the zeros of

the polynomial 4t3− g2t− g3, and ω1 and ω3 the half-periods of the Weierstrass lattice given

by

ω1 =

∫ ∞
e1

dz√
4z3 − g2z − g3

, (3.19)

ω3 = i

∫ ∞
−e3

dz√
4z3 − g2z + g3

. (3.20)

Using (3.18) we convert our general solution in terms of Jacobi elliptic functions (3.10) to

one in terms of Weierstrass elliptic functions:

cos (f(z)) = α +
β

k2λ2
(℘(z + ω3, g2, g3)− e3) , (3.21)

with

g2 =
4

3

(
1− k2 + k4

)
λ4, (3.22)

g3 =
4

27

(
2− 3k2 − 3k4 + 2k6

)
λ6, (3.23)

e1 =
1

3

(
2− k2

)
λ2, e2 =

1

3

(
−1 + 2k2

)
λ2, e3 =

1

3
(−1− k2)λ2, (3.24)

ω1 =
K(k)

λ
, ω3 =

iK′(k)

λ
, (3.25)

where K′(k) is the complement to K(k) given by K′(k) = K(1− k2). For all cases,

g2 =
4− 2E + E2

3(c2 − 1)2
, (3.26)

g3 =
8− 6E − 3E2 + E3

27(c2 − 1)3
. (3.27)

One motivation for using Weierstrass elliptic functions instead of Jacobi elliptic functions is

that there is a unique expression for the lattice invariants g2 and g3 see (3.26-3.27) which

holds for all cases, as opposed to Jacobi elliptic functions where a different elliptic modulus

k is used for each case see (3.11-3.14). The zeros of the polynomial 4s3 − g2s− g3 are

s =
E − 1

3(c2 − 1)
, s =

E + 2

6(1− c2)
, s =

4− E
6(c2 − 1)

. (3.28)
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These roots correspond to e1, e2, and e3 where e1 > e2 > e3. For the various cases:

subluminal, rotational: e1 =
E − 1

3(c2 − 1)
, e2 =

E + 2

6(1− c2)
, e3 =

4− E
6(c2 − 1)

, (3.29)

superluminal, rotational: e1 =
E − 1

3(c2 − 1)
, e2 =

4− E
6(c2 − 1)

, e3 =
E + 2

6(1− c2)
, (3.30)

subluminal, librational: e1 =
E + 2

6(1− c2)
, e2 =

E − 1

3(c2 − 1)
, e3 =

4− E
6(c2 − 1)

, (3.31)

superluminal, librational: e1 =
4− E

6(c2 − 1)
, e2 =

E − 1

3(c2 − 1)
, e3 =

E + 2

6(1− c2)
. (3.32)

3.3 The linear stability problem

To examine the linear stability of our solutions, we consider

v(z, τ) = f(z) + εw(z, τ) +O
(
ε2
)
, (3.33)

where ε is a small parameter. Substituting (3.33) into (3.2), we obtain at order ε

(c2 − 1)wzz − 2cwzτ + wττ + cos (f(z))w = 0. (3.34)

Letting w1(z, τ) = w(z, τ) and w2(z, τ) = wτ (z, τ) we rewrite (3.34) as a first-order system

of equations

∂

∂τ

 w1

w2

 = L

 w1

w2

 =

 0 1

−(c2 − 1)∂2
z − cos (f(z)) 2c∂z

 w1

w2

 . (3.35)

An elliptic solution f(z) is linearly stable if for all ε > 0 there exists a δ > 0 such that

if ||w(z, 0)||< δ then ||w(z, τ)||< ε for all τ > 0. This definition depends on the choice of

norm ||·||, which is specified in the definition of the spectrum in (3.38) below.

Since (3.35) is autonomous in τ , we separate variables to look for solutions of the form w1(z, τ)

w2(z, τ)

 = eλτ

 W1(z)

W2(z)

 , (3.36)

resulting in the spectral problem

λ

 W1

W2

 = L

 W1

W2

 =

 0 1

−(c2 − 1)∂2
z − cos (f(z)) 2c∂z

 W1

W2

 . (3.37)
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Here

σL = {λ ∈ C : max
x∈R

(|W1(x)|, |W2(x)|) <∞}, (3.38)

or

W1,W2 ∈ C0
b (R). (3.39)

For spectral stability, we need to demonstrate that the spectrum σL does not enter the

open right half of the complex λ plane. Since (3.1) is Hamiltonian [4], the spectrum of its

linearization is symmetric with respect to both the real and imaginary axis [71]. In other

words, proving spectral stability for elliptic solutions to (3.1) amounts to proving that the

stability spectrum lies strictly on the imaginary axis. We show that the elliptic solutions are

spectrally stable only in the subluminal rotational case. We demonstrate spectral elements

in the right-half plane near the origin for all choices of the parameters E and c outside the

subluminal rotational regime.

3.4 The Lax problem

We wish to obtain an analytical representation for the spectrum σL. As mentioned in the

introduction, this analytical representation comes from the squared eigenfunction connection

between the linear stability problem (3.37) and the Lax pair of (3.1). The Lax pair for

sine-Gordon is well known [1,2,4,50]. The compatibility condition χxt = χtx of the Lax pair,

χx =

 −iζ
2

+
i cos(u)

8ζ

i sin(u)

8ζ
− 1

4
(ux + ut)

i sin(u)

8ζ
+

1

4
(ux + ut)

iζ

2
− i cos(u)

8ζ

χ, (3.40)

χt =

 −iζ
2
− i cos(u)

8ζ
−i sin(u)

8ζ
− 1

4
(ux + ut)

−i sin(u)

8ζ
+

1

4
(ux + ut)

iζ

2
+
i cos(u)

8ζ

χ, (3.41)

is (3.1). We transform the Lax pair by moving into a traveling reference frame letting

z = x− ct, τ = t, and v(z, τ) = u(x, t). Additionally, to examine the stationary solutions we
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let v(z, τ) = f(z) so that

χz =

 C D

−D∗ −C

χ, (3.42)

χτ =

 A B

−B∗ −A

χ, (3.43)

where ∗ represents the complex conjugate, and

A = −i (4(1 + c)ζ2 − (c− 1) cos(f(z)))

8ζ
, (3.44)

B =
(c− 1) (i sin(f(z)) + 2(c+ 1)ζf ′(z))

8ζ
, (3.45)

C = −iζ
2

+
i cos(f(z))

8ζ
, (3.46)

D =
i sin(f(z))

8ζ
− f ′(z)

4
+
cf ′(z)

4
, (3.47)

whose compatibility condition χzτ = χτz is (3.4). We define σL, or informally the Lax

spectrum, as the set of all ζ for which (3.42) has a bounded (in z) solution. Examining

(3.43), since A and B are independent of τ, we separate variables. Let

χ(z, τ) = eΩτϕ(z), (3.48)

with Ω being independent of τ, but possibly depending on z. Substituting (3.48) into (3.43)

and canceling the exponential, we find A− Ω B

−B∗ −A− Ω

ϕ = 0. (3.49)

To have nontrivial solutions, we require the determinant of (3.49) to be zero. Using the

definitions of A and B, we get

Ω2 = A2 −BB∗ =
1

64

(
−8(c2 − 1)(E − 1)− (c− 1)2

ζ2
− 16(c+ 1)2ζ2

)
. (3.50)

As expected, Ω is independent of both τ (by construction) and z (by integrability). Thus Ω

is strictly a function of ζ and the solution parameters c and E. We remark that Ω takes the

form (3.50) for all values of c and E regardless of where we are in parameter space.
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To satisfy (3.49), we let

ϕ(z) = γ(z)

 −B(z)

A(z)− Ω

 , (3.51)

where γ(z) is a scalar function. By construction of ϕ(z), χ(z, τ) satisfies (3.43). Since (3.42)

and (3.43) commute, it is possible to choose γ(z) such that χ also satisfies (3.42). Indeed,

γ(z) satisfies a first-order linear equation, whose solution is given by

γ(z) = γ0 exp

(∫
−C(A− Ω) +BD∗ − Az

A− Ω
dz

)
. (3.52)

For almost every ζ ∈ C, we have explicitly determined the two linearly independent solutions

of (3.42), i.e., those corresponding to the positive and negative signs of Ω in (3.50). Assuming

Ω 6= 0 these two solutions are, by construction, linearly independent. In the case where ζ

is a root of Ω, the second solution to (3.42) can be determined via the reduction-of-order

method.

Since (3.42) and (3.43) share eigenfunctions, σL is the set of all ζ ∈ C such that (3.51) is

bounded for all z ∈ R. The vector part of ϕ is bounded for all z, so we only need that the

scalar function γ(z) is bounded as z → ±∞. A necessary and sufficient condition for this is〈
Re

(
−C(A− Ω) +BD∗ − Az

A− Ω

)〉
= 0, (3.53)

where 〈·〉 is the average over one period 2K(k) of the integrand, and Re denotes the real

part. The integral condition (3.53) completely determines the Lax spectrum σL.

3.5 The squared eigenfunction connection

A connection between the eigenfunction of the Lax pair (3.42) and (3.43) and the eigenfunc-

tions of the linear stability problem (3.37) using squared eigenfunctions is well known [1].

We prove the following theorem.

Theorem 3.5.1. The sum of squares,

w(z, τ) = χ1(z, τ)2 + χ2(z, τ)2, (3.54)
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satisfies the linear stability problem (3.34) for f(z). Here χ = (χ1, χ2)T is any solution of

(3.42-3.43).

Proof. The proof is done by direct calculation. Substitute w(z, τ) into the left-hand side

of (3.34). Eliminate z-derivatives of χ1 and χ2 (up to order 2) using (3.42) and eliminate

τ -derivatives of χ1 and χ2 (up to order 2) using (3.43). The resulting expression for the

left-hand side is 0, thus demonstrating that (3.34) is satisfied, finishing the proof.

To establish the connection between σL and σL, we examine the right- and left-hand sides

of (3.36). Substituting (3.54) and (3.48) to the left hand side of (3.36) we find

e2Ωτ

 ϕ2
1 + ϕ2

2

2Ω (ϕ2
1 + ϕ2

2)

 = eλτ

 W1(z)

W2(z)

 , (3.55)

so we conclude that

λ = 2Ω(ζ), (3.56)

with eigenfunctions given by W1(z)

W2(z)

 =

 ϕ2
1 + ϕ2

2

2Ω (ϕ2
1 + ϕ2

2)

 . (3.57)

This gives the connection between the σL spectrum and the σL spectrum. It is also necessary

to check that indeed all solutions of (3.37) are obtained through (3.55). This is not shown

explicitly here, but is done analogous to the work in [11,12].

Although in principle the above construction determines σL, it remains to be seen whether

this determination is practical. In the following section we discuss a technique for explicitly

integrating (3.53) using Weierstrass elliptic functions, leading to a more explicit characteri-

zation of σL.

3.6 The Lax spectrum in terms of elliptic functions

In terms of Weierstrass elliptic functions, (3.53) becomes

Re

∫ 2ω1

0

−C(A− Ω) +BD∗ − Az
A− Ω

dz = 0, (3.58)
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with A, B, C, and D given in (3.46-3.47). Substituting in for f(z) using (3.21) we find that

(3.58) is

Re

∫ 2ω1

0

C1 + C2℘(z) + C3℘
′(z)

C4 + C5℘(z)
dz = 0, (3.59)

with ℘(z) = ℘(z + ω3, g2, g3) with the dependence on ω3, g2, and g3 suppressed. The Cj’s

depend on ζ but are independent of z. Like Ω(ζ), the Cj’s take one form regardless of where

the solution is in parameter space. They are given by

C1 =
1

3
(− 3i− 16i(E − 1)ζ2 + 48iζ4 + 3ic

(
1 + 8(E − 1)ζ2 + 16ζ4

)
(3.60)

+
(
8(e− 1)ζ + 96ζ3

)
Ω(ζ)), (3.61)

C2 =16(c2 − 1)ζ (iζ + Ω(ζ)) , (3.62)

C3 =− 8(c− 1)2(c+ 1)ζ, (3.63)

C4 =
8

3
ζ
(
(c− 1)(E − 1) + 12(c+ 1)ζ2 − 24iζΩ(ζ)

)
, (3.64)

C5 =16(c− 1)2(c+ 1)ζ. (3.65)

We evaluate the integral in (3.59) explicitly [35]. We find

Re

[
2ω1C2

C5

+
4 (C1C5 − C2C4)

℘′(ρ)C2
5

(ζw(ρ)ω1 − ζw(ω1)ρ)

]
= 0, (3.66)

with

ρ = ρ(ζ) = ℘−1

(
−C4(ζ)

C5(ζ)
, g2, g3

)
, (3.67)

and ζw is the Weierstrass Zeta function [55]. Note that ℘−1 is a multivalued function, but

for our analysis ρ is chosen as any value such that ℘(ρ) = −C4(ζ)/C5(ζ). Substituting for

the Cj’s (3.66) becomes

Re

[
2ω1 (iζ + Ω(ζ))

c− 1
+

4ζ (−i(c− 1)(E − 1)− 4i(c+ 1)ζ2 − 8ζΩ(ζ))

(c− 1)3(c+ 1)℘′(ρ)
(ζw(ρ)ω1 − ζw(ω1)ρ)

]
= 0.

(3.68)

We simplify this further by recognizing that

℘′
2
(ρ) = 4℘3(ρ)− g2℘(ρ)− g3 = 4

(
−C4(ζ)

C5(ζ)

)3

− g2

(
−C4(ζ)

C5(ζ)

)
− g3. (3.69)
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Substituting in for C4(ζ) and C5(ζ) gives

℘′
2
(ρ) = 4

(
ζ (−i(c− 1)(E − 1)− 4i(c+ 1)ζ2 − 8ζΩ(ζ))

(c− 1)3(c+ 1)

)2

. (3.70)

Thus (3.68) simplifies to

Re

(
2ω1 (iζ + Ω(ζ))

c− 1
+ 2ν (ζw(ρ)ω1 − ζw(ω1)ρ)

)
= 0, (3.71)

where

ν =


+1 if − π

2
< arg

(
ζ(−i(c−1)(E−1)−4i(c+1)ζ2−8ζΩ(ζ))

(c−1)3(c+1)

)
≤ π

2
,

−1 otherwise.

(3.72)

Using (3.25), and applying the formula for the Weierstrass ζ function evaluated at a half

period [17], ζw(ω1) =
√
e1 − e3

(
E(k)− e1

e1−e3K(k)
)
, (3.71) becomes

Re

[
2K(k) (iζ + Ω(ζ))

c− 1
+ 2ν

(
ζw(ρ)K(k)−

√
e1 − e3

(
E(k)− e1

e1 − e3

K(k)

)
ρ

)]
= 0.

(3.73)

Here

E(k) =

∫ π/2

0

√
1− k2 sin2 y dy, (3.74)

is the complete elliptic integral of the second kind. We have simplified the integral condition

(3.58) significantly. Thus ζ ∈ σL if and only if (3.73) is satisfied. To simplify notation, let

I(ζ) =
2ω1 (iζ + Ω(ζ))

c− 1
+ 2ν (ζw(ρ)ω1 − ζw(ω1)ρ) , (3.75)

so that (3.73) is

Re [I(ζ)] = 0. (3.76)

Next, we wish to examine the level sets of the left-hand side of (3.76). To this end, we

differentiate I(ζ) with respect to ζ. To evaluate this derivative we use the chain rule and

note that

∂

∂ζ
ζw(ρ) = −℘(ρ)

∂ρ

∂ζ
=
C4(ζ)

C5(ζ)

d℘−1

dζ

(
−C4(ζ)

C5(ζ)
, g2, g3

)(
−C4(ζ)

C5(ζ)

)′
. (3.77)
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Since
d

dz
℘−1

(
−C4(ζ)

C5(ζ)
, g2, g3

)
=

1

℘′
(
℘−1

(
−C4(ζ)
C5(ζ)

, g2, g3

)) =
1

℘′(ρ)
, (3.78)

we use (3.70) to obtain

dI(ζ)

dζ
=

3(c− 1)ω1 − 48(c+ 1)ζ4ω1 − 8ζ2 (6(c2 − 1)ζw(ω1) + (1− E)ω1)

96ζ3Ω(ζ)
. (3.79)

Taking the real part of (3.79) does not give another characterization of the spectrum. Instead,

if we think of (3.73) as restricting to the zero level set of the left-hand side. Then we use

(3.79) to determine a tangent vector field which allows us to map out level curves originating

from any point. This is explained in more detail in Section 3.7.

3.7 The σL spectrum on the imaginary axis

In this section we discuss σL ∩ iR. As we demonstrate, this corresponds to the part of σL

lying on the real axis for both rotational and librational waves, as well as a part of σL lying

on the imaginary axis for rotational waves. Using (3.73) we obtain analytic expressions for

σL corresponding to σL ∩ iR.

We begin by considering ζ ∈ R. As we demonstrate below, (3.73) is satisfied for any real

ζ. Using (3.50) and (3.56), we determine the corresponding parts of σL.

Theorem 3.7.1. The condition (3.73) is satisified for ζ ∈ R.

Proof. Since k, c, K(k), and E(k) are real, it suffices to show that Ω(ζ) ∈ iR, ρ ∈ iR, and

ζw(ρ) ∈ iR. Rewriting (3.50) in the superluminal case,

Ω2(ζ) = − 1

64

((
−4(1 + c)ζ +

c− 1

ζ

)2

+ 8E(c2 − 1)

)
, (3.80)

and in the subluminal case,

Ω2(ζ) = − 1

64

((
−4(1 + c)ζ − c− 1

ζ

)2

+ 8(2− E)(1− c2)

)
. (3.81)
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In either case Ω2 ≤ 0 and Ω(ζ) ∈ iR. Since ζw with g2, g3 ∈ R takes real values to real values

and purely imaginary values to purely imaginary values [55], to prove ζw(ρ) ∈ iR it suffices

to show that ρ = ℘−1
(
−C4(ζ)
C5(ζ)

, g2, g3

)
∈ iR. For g2, g3 ∈ R, ℘(R, g2, g3) maps to [e1,∞), and

since ℘(ix, g2, g3) = −℘(x, g2,−g3) we have that ℘(iR, g2, g3) maps to (−∞, e3]. Thus we

need to show that for ζ ∈ R, −C4(ζ)
C5(ζ)

≤ e3. Again we split into cases. In the superluminal

case, we want to show

(c− 1)(E − 1) + 12(c+ 1)ζ2 − 24iζΩ(ζ)

6(c− 1)(1− c2)
≤ E + 2

6(1− c2)
. (3.82)

Substituting in for Ω(ζ) using (3.80) and simplifying the left- and right-hand sides of this

expression yields

4(c+ 1)ζ2

c− 1
+

√
(−4(1 + c)ζ2 + (c− 1))2 + 8E(c2 − 1)ζ2

c− 1
≥ 1. (3.83)

Since
√

(−4(1 + c)ζ2 + (c− 1))2 + 8E(c2 − 1)ζ2 ≥
√

(−4(1 + c)ζ2 + (c− 1))2, (3.83) is sat-

isfied. For the subluminal case we proceed in a similar manner, noting the different value of

e3 from (3.29-3.32). We want to show

(c− 1)(E − 1) + 12(c+ 1)ζ2 − 24iζΩ(ζ)

6(c− 1)(1− c2)
≤ E − 4

6(1− c2)
. (3.84)

Substituting in for Ω(ζ) using (3.81) and simplifying the left- and right-hand sides of this

expression yields

4(c+ 1)ζ2 +
√

(−4(c+ 1)ζ2 + (1− c))2 + 8(2− E)(1− c2)ζ2

1− c
≥ 1. (3.85)

Since
√

(−4(c+ 1)ζ2 + (1− c))2 + 8(2− E)(1− c2)ζ2 ≥
√

(−4(c+ 1)ζ2 + (1− c))2, (3.85)

is satisfied.

At this point, we know that R ⊂ σL. We wish to see what this corresponds to for σL.

For convenience define

SΩ =

{
Ω : Ω2 =

1

64

(
−8(c2 − 1)(E − 1)− (c− 1)2

ζ2
− 16(c+ 1)2ζ2

)
and ζ ∈ σL

}
. (3.86)
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Figure 3.3: Ω2 as a function of real ζ for subluminal and superluminal waves: (a) subluminal:
c = 0.4 and E = 1, and (b) superluminal: c = 1.4 and E = 1.

As was seen in the proof of Theorem 3.7.1, when ζ ∈ R, Ω(ζ) ∈ iR. Applying (3.56), we see

that ζ ∈ R corresponds to σL ∪ iR. Representative plots of Ω2 are shown in Figure 3.3. The

subset of SΩ corresponding to ζ ∈ R consists of (−i∞,−i|Ωm|] ∪ [i|Ωm|, i∞), where Ω2
m is

the maximum value of Ω2. The set SΩ corresponding to ζ ∈ R is quadruple covered as for

all values of Ω there are four values of ζ which map to it, except at Ω = ±Ωm, where just

two values of ζ map to it. Ωm can be found explicitly by finding the extrema of Ω2(ζ). In

the subluminal case, Ω2(ζ) reaches its maxima at

ζm = ±

√
1− c

4(1 + c)
, Ω2

m = −1

8
(1− c2)(2− E), (3.87)

and in the superluminal case, Ω2(ζ) reaches its maxima at

ζm = ±

√
c− 1

4(1 + c)
, Ω2

m = −1

8
(c2 − 1)E. (3.88)

Applying (3.56) we have (−i∞,−λ1] ∪ [λ1, i∞) ⊂ σL where

λ1 = i

√
(1− c2)(2− E)

2
, (3.89)

in the subluminal case, and

λ1 = i

√
E(c2 − 1)

2
, (3.90)
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in the superluminal case.

If ζ satisfies Ω2(ζ) = 0, then ζ must satisfy (3.73). This is due to the fact that the origin

is always included in σL and hence in SΩ. The fact that there are four roots of Ω2(ζ) = 0

corresponds to the fact that 0 ∈ σL with multiplicity four. This is seen from the symmetries

of (3.1) and by applying Noether’s Theorem [47,65]. For rotational waves, the roots of Ω2(ζ)

lie on the imaginary axis. For the subluminal rotational case the roots are:

ζc =

{ √
1− c2

2
√

2(c+ 1)

(√
−E ±

√
2− E

)
i,−

√
1− c2

2
√

2(c+ 1)

(√
−E ±

√
2− E

)
i

}
, (3.91)

and in the superluminal rotational case the roots are:

ζc =

{ √
c2 − 1

2
√

2(c+ 1)

(√
E ±

√
E − 2

)
i,−

√
c2 − 1

2
√

2(c+ 1)

(√
E ±

√
E − 2

)
i

}
. (3.92)

We label the four roots ζ1, ζ2, ζ3, and ζ4 where Im(ζ1) < Im(ζ2) < Im(ζ3) < Im(ζ4). They

are labeled for reference in Figure 3.4.

Theorem 3.7.2. For rotational waves, the condition (3.73) is satisified for all ζ ∈ iR such

that Im(ζ1) ≤ Im(ζ) ≤ Im(ζ2) or Im(ζ3) ≤ Im(ζ) ≤ Im(ζ4).

Proof. The level curve (3.76), is exactly the condition (3.73). We examine the tangent vector

field to (3.76). If we let ζ = ζr + iζi, then

I(ζ) = I(ζr + iζi) =
2ω1 (i(ζr + iζi) + Ω(ζr + iζi))

c− 1
+ 2ν (ζw(ρ)ω1 − ζw(ω1)ρ) . (3.93)

Taking derivatives with respect to ζr and ζi gives a normal vector field to level curves of the

general condition Re [I(ζ)] = C for any constant C, specifically, the normal vector is given

by (
dRe [I(ζr + iζi)]

dζr
,
dRe [I(ζr + iζi)]

dζi

)
.

Thus, the tangent vector field is(
−dRe [I(ζr + iζi)]

dζi
,
dRe [I(ζr + iζi)]

dζr

)
.
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Figure 3.4: Ω2 as a function of iζ, ζ ∈ R for subluminal and superluminal rotational waves:
(a) subluminal rotational: c = 0.4 and E = −1, and (b) superluminal rotational: c = 1.4
and E = 3.

By applying the chain rule and using Re[iz] = −Im[z], we have that the tangent vector field

to the level curves is (
Im

[
dI

dζ

]
,Re

[
dI

dζ

])
. (3.94)

Where dI
dζ

is given in (3.79). We note that the numerator of (3.79) is strictly real for ζ ∈ iR,

thus

Im

[
dI

dζ

]
=
(
3(c− 1)ω1 − 48(c+ 1)ζ4ω1 − 8ζ2

(
3(c2 − 1)ζw(ω1) + (1− E)ω1

))
Im

[
1

96ζ3Ω(ζ)

]
.

(3.95)

Since Ω2(ζ) ≤ 0 for ζ ∈ [ζ1, ζ2] ⊂ iR and for ζ ∈ [ζ3, ζ4] ⊂ iR we have that

Im

[
dI

dζ

]
= 0, (3.96)

and thus Re [I(ζ)] = C on these intervals. Since Re [I(ζ)] = 0 at the endpoints ζc, C = 0

and (3.73) is satisfied.

At this point we know that [ζ1, ζ2] ∪ [ζ3, ζ4] ⊂ σL. We wish to see what this corresponds

to for σL. Representative plots of Ω2(iζ), ζ ∈ R are shown in Figure 3.4. The subset of

SΩ corresponding to ζ ∈ [ζ1, ζ2] ∪ [ζ3, ζ4] consists of [−i|Ωn|, 0], where Ω2
n is the minimum
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value of Ω2. The set SΩ corresponding to ζ ∈ [ζ1, ζ2]∪ [ζ3, ζ4] is quadruple covered, except at

the points ±Ωn, where the set is double-covered. Ωn can be found explicitly by finding the

extrema of Ω2(iζ). In the subluminal rotational case, Ω2(ζ) reaches its minima at

ζn = ±

√
1− c

4(c+ 1)
i, Ω2

n(ζ) =
1

8
(1− c2)E, (3.97)

and in the superluminal rotational case, Ω2(ζ) reaches its minima at

ζn = ±

√
c− 1

4(c+ 1)
i, Ω2

n(ζ) =
1

8
(c2 − 1)(E − 2). (3.98)

Applying (3.56) we have [−λ2, λ2] ⊂ σL where

λ2 =

√
(1− c2)E

2
i, (3.99)

in the subluminal rotational case, and

λ2 =

√
(c2 − 1)(E − 2)

2
i, (3.100)

in the superluminal rotational case.

3.8 Qualitatively different parts of the spectrum

Up to this point we have discussed only the subset of σL that is on the imaginary axis. In

this section we discuss the rest of the spectrum. Except in the subluminal, rotational case, a

part of σL is in the right-half plane (corresponding to unstable modes). For each of the other

three regions we split parameter space into two subregions where σL \ iR is qualitatively

different. Here σL \ iR is the closure of σL not on the imaginary axis.

We refer to Figure 3.5, which shows (E, c) parameter space with curves that split it into

subregions where σL \ iR is qualitatively different. The exact curves splitting up the regions,

and their derivations, are given below. In Figure 3.6 we show representative plots of σL for

all qualitatively different spectra, and in Figure 3.7 we show the corresponding σL spectrum.
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Figure 3.5: Parameter space with regions corresponding to different qualitative behavior in
the linear stability spectrum separated by black curves. Colors correspond to solutions in
Figure 3.1. Blue: subluminal rotational (0 ≤ |c|< 1, E < 0), orange: subluminal librational
(0 ≤ |c|< 1, 0 < E ≤ 2), green: superluminal librational (|c|> 1, 0 ≤ E < 2), red:
superluminal rotational (0 ≤ |c|> 1, E > 2).
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• The spectral stability of subluminal rotational solutions is well known [45, 46] and

σL ⊂ iR. A representative plot of σL is seen in Figure 3.6(e).

• For the subluminal librational solutions, σL \ iR consists of either a double-covered

infinity symbol, see Figure 3.6(f), or a double-covered figure 8 inset inside a double-

covered ellipse-like curve, see Figure 3.6(g). The boundary between these regions is

given explicitly below and a representative plot of σL on this boundary is seen in

Figure 3.8(3a).

• For the superluminal librational solutions, σL \ iR consists of either a double-covered

figure 8, see Figure 3.6(a), or a double-covered infinity symbol inset inside a double-

covered ellipse-like curve, see Figure 3.6(b). The boundary between these regions is

given below and a representative plot of σL on this boundary is seen in Figure 3.8(1a).

• For the superluminal rotational solutions, σL \ iR consists of either a double-covered

ellipse-like curve surrounding the origin, see Figure 3.6(c), or a double-covered ellipse-

like curve in the upper- and lower-half plane, see Figure 3.6(d). The boundary between

these regions is given explicitly below and a representative plot of σL on this boundary

is seen in Figure 3.8(2a).

For all these cases, much can be proven and quantified explicitly, i.e., not in terms

of special functions. Specifically, we calculate explicit expressions for σL ∩ iR and in the

librational case we find explicit expressions for the tangents to σL around the origin. In fact,

we are able to approximate the spectrum at the origin and around all points σL ∩ iR using a

Taylor series to arbitrary order. These series give good approximations to the greatest real

part of σL using only a few terms. They are not given in this chapter, but follow from the

same procedure as outlined in Chapter 2.

A method for determining σL is to take known points satisfying (3.73) and to follow the

tangent vector field (3.94) from those points. We apply this technique from ζ ∈ R which we

know to satisfy (3.73) from Theorem 3.7.1 as well as from the points ζ satisfying Ω2(ζ) = 0.
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Figure 3.6: The stability spectrum for superluminal (a-d), subluminal (e-g), librational
(a,b,f,g) and rotational (c,d,e) waves. (a) c = 1.5, E = 1.5; (b) c = 1.02, E = 1.8; (c)
c = 1.1, E = 2.2; (d) c = 1.4, E = 2.4; (e) c = 0.6, E = −0.75; (f) c = 0.6, E = 1.0; (g)
c = 0.8, E = 1.5; Colors correspond to Figure 3.2, thickness of lines corresponds to double
or quadruple covering of spectrum.

3.8.1 Subluminal librational solutions

The roots of Ω2(ζ) = 0 are given by

ζc =

{√
1− c2

√
E

2
√

2(c+ 1)
±
√

1− c2
√

2− e
2
√

2(c+ 1)
i,−
√

1− c2
√
E

2
√

2(c+ 1)
±
√

1− c2
√

2− e
2
√

2(c+ 1)
i

}
, (3.101)

seen as red crosses in Figure 3.7(f,g). For convenience, we label these four roots ζ1, ζ2, ζ3, ζ4,

where the subscript corresponds to the quadrant on the real and imaginary plane the root

is in. In this case, (3.79) is

dI(ζ)

dζ
=
√

1− c2
16ζ2E(k) + (c− 1− 8ζ2 − 16(c+ 1)ζ4)K(k)

32ζ3Ω(z)
. (3.102)

Examining (3.94) for ζ ∈ R, for a vertical tangent in σL to occur, we need the numerator

of (3.102) to be zero. Using the discriminant of 16ζ2E(k) + (c− 1− 8ζ2 − 16(c+ 1)ζ4)K(k)
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Figure 3.7: The Lax spectrum (black curves) for superluminal (a-d), subluminal (e-g), libra-
tional (a,b,f,g) and rotational (c,d,e) waves. (a) c = 1.5, E = 1.5; (b) c = 1.02, E = 1.8; (c)
c = 1.1, E = 2.2; (d) c = 1.4, E = 2.4; (e) c = 0.6, E = −0.75; (f) c = 0.6, E = 1.0; (g)
c = 0.8, E = 1.5. Red crosses signify values of ζ for which Ω2(ζ) = 0. Blue crosses signify
values of ζ ∈ R for which σL has a vertical tangent.

as a function of ζ, we find the condition

c =
2
√
−E2(k) + E(k)K(k)

K(k)
, (3.103)

for a vertical tangent to occur on the real axis. This condition is plotted as the black curve

in the subluminal rotational region of Figure 3.5, and defines the split between qualitatively

different spectra. Representative spectral plots for E and c on this boundary are seen in

Figure 3.8(3). For solutions satisfying (3.103) we have the following

ζt1 = ±1

2

√
1

(1 + c)K(k)

(
2E(k)−K(k) +

√
4E2(k)− 4E(k)K(k) + c2K2(k)

)
, (3.104)
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and

ζt2 = ±1

2

√
1

(1 + c)K(k)

(
2E(k)−K(k)−

√
4E2(k)− 4E(k)K(k) + c2K2(k)

)
, (3.105)

shown as blue crosses in Figure 3.7(g). Mapping these points back to σL these points corre-

spond to the top (or bottom) of the inset figure 8 in Figure 3.6(g):

λt1 = ±

√
E − c2(E − 1)

2
+
−2E(k) + c

√
4E2(k)− 4E(k)K(k) + c2K2(k)

2K(k)
, (3.106)

and the ellipse-like curve in Figure 3.6(g):

λt2 = ±

√
E − c2(E − 1)

2
+
−2E(k)− c

√
4E2(k)− 4E(k)K(k) + c2K2(k)

2K(k)
. (3.107)

Next we examine the slopes of σL at the origin. Because σL = 2SΩ it suffices to examine

the slopes for the set SΩ. We let Ω = Ωr + iΩi, and we consider ζi as a function of ζr so that

Ω (ζr, ζi(ζr)). Applying the chain rule we have that the slope at any point in the set SΩ is

dΩi

dΩr

=
dΩi/dζr
dΩr/dζr

=

dΩi

dζr
+ dΩi

dζi
dζi
dζr

dΩr

dζr
+ dΩr

dζi
dζi
dζr

, (3.108)

where
dζi
dζr

= −dRe(I)/dζr
dRe(I)/dζi

. (3.109)

We examine (3.108) near where Ω = 0 and ζ = ζc. The slopes at the origin are

dΩi

dΩr

= ±
c
√
E(2− E)K(k)

−2E(k) + EK(k)
. (3.110)

Further application of the chain rule can yield expressions for derivatives around the origin

of any order, and the same technique can be applied around (3.106) and (3.107). In doing

this we can obtain Taylor series approximations of σL to any order.

3.8.2 Superluminal librational solutions

The roots of Ω2(ζ) = 0 are given by

ζc =

{√
c2 − 1

√
2− E

2
√

2(c+ 1)
±
√
c2 − 1

√
E

2
√

2(c+ 1)
i,−
√
c2 − 1

√
2− E

2
√

2(c+ 1)
±
√
c2 − 1

√
E

2
√

2(c+ 1)
i

}
, (3.111)
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Figure 3.8: (1) The stability spectrum for the cases separating subregions and (2) the corre-
sponding Lax spectrum (black curves). Red crosses signify values of ζ for which Ω2(ζ) = 0.
Blue crosses signify values of ζ ∈ R for which σL has a vertical tangent. (a) Superluminal
librational: c = 1.03702, E = 1.8, (b) superluminal rotational: c = 1.3, E = 2.27060 (c)
subluminal librational: c = 0.67148, E = 1.5.
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seen as red crosses in Figure 3.7(f,g). As in Section 3.8.1, we label these four roots ζ1, ζ2, ζ3, ζ4,

where the subscript corresponds to the quadrant on the real and imaginary plane the root

is in. In this case, (3.79) is

dI(ζ)

dζ
=
√
c2 − 1

−16ζ2E(k) + (c− 1 + 8ζ2 − 16(c+ 1)ζ4)K(k)

32ζ3Ω(z)
. (3.112)

Examining (3.94) for ζ ∈ R, for a vertical tangent in σL to occur, we need the numerator

of (3.112) to be zero. In this case, there are always two real values of ζ for which vertical

tangents in σL occur:

ζt = ±1

2

√
1

(1 + c)K(k)

(
−2E(k)−K(k) +

√
4E2(k)− 4E(k)K(k) + c2K2(k)

)
, (3.113)

shown as blue crosses in Figure 3.7(a,b). Mapping these points back to σL these points

correspond to the top (or bottom) of the figure 8 in Figure 3.6(a) or the top (or bottom) of

the ellipse-like curve in Figure 3.6(b):

λt = ±

√
E − 2− c2(e− 1)

2
+

2E(k)− c
√

4E2(k)− 4E(k)K(k) + c2K2(k)

2K(k)
. (3.114)

In the subluminal librational case in Section 3.8.1, the qualitative change in the spectrum

occurred when there was a bifurcation in the real values of ζ with vertical tangents. In this

case, there is no such bifurcation. The qualitative change in the spectrum occurs when there

is a bifurcation in imaginary values of ζ. The imaginary roots of the numerator of (3.112)

are

ζp = ±1

2
i

√
1

(1 + c)K(k)

(
2E(k) +K(k) +

√
4E2(k)− 4E(k)K(k) + c2K2(k)

)
. (3.115)

The qualitative change occurs for E and c such that ζp satisfies (3.73). This defines the

curve seen in the superluminal librational region of Figure 3.5. Representative spectral plots

for E and c on this boundary are seen in Figure 3.8(1). The slopes of σL at the origin are

computed using the method described in Section 3.8.1. They are

dΩi

dΩr

= ±
c
√
E(2− E)K(k)

2E(k) + (E − 2)K(k)
. (3.116)

As with the subluminal librational solutions, expressions for derivatives of any order around

the origin and around (3.114) can be computed.
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3.8.3 Superluminal rotational solutions

The roots of Ω2(ζ) = 0 are given in (3.92), seen as red crosses in Figure 3.7(c,d). In this

case, (3.79) is

dI(ζ)

dζ
=
√
c2 − 1

−8Eζ2E(k) + (c− 1 + 8(E − 1)ζ2 − 16(c+ 1)ζ4)K(k)

16
√

2ζ3Ω(z)
. (3.117)

Examining (3.94) for ζ ∈ R, for a vertical tangent in σL to occur, we need the numerator of

(3.117) to be zero. In this case, again, there are always two real values of ζ for which vertical

tangents in σL occur:

ζt = ±
1

2

√
1

(1 + c)K(k)

(
−EE(k) + (E − 1)K(k) +

√
E2E2(k)− 2(E − 1)EE(k)K(k) + (c2 + (E − 2)E)K2(k)

)
,

(3.118)

shown as blue crosses in Figure 3.7(a,b). Mapping these points back to σL these points

correspond to the top (or bottom) of the ellipse-like curve in Figure 3.6(c) and the top of

the ellipse-like curve in the upper-half plane and the bottom of the ellipse-like curve in the

lower-half plane in Figure 3.6(d):

λt = ±

√
EE(k)− c2(E − 1)K(k)− c

√
E2E2(k)− 2(E − 1)EE(k)K(k) + (c2 + (E − 2)E)K2(k)

2K(k)
.

(3.119)

As in the superluminal librational case above, we do not have a bifurcation in the real values

of ζ with vertical tangents. The qualitative change in the spectrum occurs when there is a

bifurcation in imaginary values of ζ. The imaginary roots of the numerator of (3.117) are

ζp = ±1

2
i

√
1

(1 + c)K(k)

(
EE(k) + (1− E)K(k) +

√
E2E2(k)− 2(E − 1)EE(k)K(k) + (c2 + (E − 2)E)K2(k)

)
.

(3.120)

The qualitative change occurs for E and c such that |ζp|= ζ4 and −|ζp|= ζ1 where ζ1 and

ζ4 are the smallest and largest roots of Ω2(ζ) = 0 respectively. This condition is seen in

Figure 3.8(2b) and is

c =
E(k)

K(k)

√
E

E − 2
. (3.121)
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For c >
√

E
E−2

E(k)
K(k)

, we map ζp to σL and find these points corresponding to the bottom

of the ellipse-like curve in the upper-half plane and the top of the ellipse-like curve in the

lower-half plane in Figure 3.6(d):

λ = ±

√
EE(k)− c2(E − 1)K(k) + c

√
E2E2(k)− 2(E − 1)EE(k)K(k) + (c2 + (E − 2)E)K2(k)

2K(k)
.

(3.122)

3.9 Floquet theory and subharmonic perturbations

We examine σL using a Floquet parameter description. We use this to prove spectral stability

results with respect to perturbations of an integer multiple of the fundamental period of the

solution, i.e., subharmonic perturbations.

We write the eigenfunctions from (3.37) using a Floquet-Bloch decomposition W1(z)

W2(z)

 = eiµz

 Ŵ1(z)

Ŵ2(z)

 , Ŵ1(z + T (k)) = Ŵ1(z), Ŵ2(z + T (k)) = Ŵ2(z), (3.123)

with µ ∈ [−π/T (k), π/T (k)) [23, 27]. Here T (k) = 2K(k) for all solutions. From Floquet’s

Theorem [23], all bounded solutions of (3.37) are of this form, and our analysis includes

perturbations of an arbitrary period. Specifically, µ = 2mπ/T (k) for m ∈ Z corresponds to

perturbations of the same period T (k) of the solutions, and in general

µ =
2mπ

PT (k)
, m, P ∈ Z, (3.124)

corresponds to perturbations of period PT (K). The choice of the specific range of µ is

arbitrary as long as it is of length 2π/T (k). For added clarity in this section, we plot figures

using the larger ranges [−2π/T (k), 2π/T (k)), periodically extending µ beyond the basic

region.

In the previous sections σL is parameterized in terms of ζ. We wish to re-parameterize

σL in terms of µ. We examine the eigenfunction W1 from (3.123). From the periodicity of

Ŵ1 we have

eiµT (k) =
W1(z + T (k))

W1(z)
. (3.125)
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Using (3.57), (3.51), and (3.52), we find

eiµT (k) = exp

(
−2

∫ T (k)

0

−BC +D(A− Ω) +Bz

B
dz

)
, (3.126)

where we have used the periodicity properties

A (z + T (k)) = A(z), B (z + T (k)) = B(z). (3.127)

Using (3.73),

µ(ζ) = −2iI(ζ)

T (k)
+

2πn

T (k)
, (3.128)

where I(ζ) is given in (3.75) and n ∈ Z.

In what follows we discuss the stability of solutions with respect to perturbations of

integer multiples of their fundamental periods, so-called subharmonic perturbations [39].

The expression (3.128) gives an easy way to do this. Specifically, from (3.124) we know

which values of µ correspond to perturbations of what type. For stability with respect to

perturbations of period 2πm/µ = PT (k), we need all spectral elements associated with a

given µ value to have zero real part. In Figure 3.9 we plot the real part of σL as a function of

µT (k) using (3.50), (3.56), and (3.128). We rescale µ by T (k) for consistency in our figures.

Here

µT (k) =
2πm

P
, (3.129)

corresponds to perturbations of PT (k) for any integer m.

The following results are obtained in each region of parameter space:

• For the subluminal rotational case, all solutions are spectrally stable [45, 46].

• For the subluminal librational case, all solutions are spectrally unstable with respect

to all subharmonic perturbations. This is shown in Section 3.9.1.

• For the superluminal librational case, all solutions are spectrally unstable, but all

solutions left of curve 2 in Figure 3.10 are stable with respect to perturbations of twice
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Figure 3.9: The real part of the spectrum Re(λ) (vertical axis) as a function of µT (k) (hori-
zontal axis): for subluminal librational (a-b), superluminal librational (c-e), and superlumi-
nal rotational (f-h) solutions. (a) c = 0.6, E = 1.0; (b) c = 0.8, E = 1.5; (c) c = 1.5, E = 0.7;
(d) c = 1.5, E = 1.5; (e) c = 1.02, E = 1.8; (f) c = 1.3, E = 2.9; (g) c = 1.4, E = 2.4; (h)
c = 2.1, E = 6.8.

the period and the same period, all solutions left of curve 4 are stable with respect

to perturbations of four times the period, all solutions left of curve 6 are stable with

respect to perturbations of six times the period, as well as three times the period, etc.

This is shown in Section 3.9.2.

• For the superluminal rotational case, all solutions are spectrally unstable, but there

are regions of stability with respect to subharmonic perturbations, see Figure 3.12 and

Section 3.9.3 for details.

We provide the following useful lemma:

Lemma 3.9.1. For any analytic function f(z) = u(x, y) + iv(x, y), on a contour where

u(x, y) = constant, v(x, y) is strictly monotone, provided the contour does not traverse a
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saddle point. Similarly, on a contour where v(x, y) = constant, u(x, y) is strictly monotone,

provided the contour does not traverse a saddle point.

Proof. This is an immediate consequence of the Cauchy-Riemann relations [10].

Thus along contours where Re(I(ζ)) = 0, if there are no saddle points, then Im(I(ζ))

is monotone. If we fix c and E, using (3.128) we see that µ(ζ)T (k) = 2πn + 2Im(I(ζ)) −

2iRe(I(ζ)) is also monotone along curves with Re (I(ζ)) = 0. In what follows, we omit

σL ∩ iR.

3.9.1 Subluminal librational solutions

There are two cases to consider for subluminal librational solutions, corresponding to the

two qualitatively different stability spectra seen in Figure 3.6(f,g), and their corresponding

Lax spectra in Figure 3.7(f,g). Representative plots of µT (k) vs. Re(λ) for these cases are

shown in Figure 3.9(a,b). We prove the following theorem:

Theorem 3.9.2. The subluminal librational solutions to (3.1) are unstable with respect to

all subharmonic perturbations.

Proof. It suffices to show that for some ζ ∈ σL, µ = 0 and Re(λ) > 0. We split into cases

with qualitatively different spectra:

1. In the case where the stability spectrum looks qualitatively like an infinity symbol, we

examine ζ ∈ σL, see Figure 3.7(f). The infinity symbol spectrum is double covered,

so without loss of generality, we consider only values of ζ in the upper-half plane.

Specifically, we consider values of ζ ranging from ζ2 to ζ1, moving from the red cross

in the second quadrant to the red cross in the first quadrant of Figure 3.7(f). At

ζ2, µT (k) = −π and Re(λ) = 0. As ζ moves from ζ2 to ζ1, µT (k) monotonically

increases (Lemma 3.9.1) until it reaches µT (k) = π at ζ = ζ1, where Re(λ) = 0, see

Figure 3.9(a). Along this curve Re(λ) 6= 0 so by the intermediate value theorem at

some point between ζ2 and ζ2, µT (k) = 0 with Re(λ) > 0.
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2. In the case where the stability spectrum looks qualitatively like a figure 8 inset in

an ellipse-like curve, examine ζ ∈ σL, see Figure 3.7(g). The ζ spectrum has two

components, ζ corresponding to the figure 8, and ζ corresponding to the ellipse-like

curve. For instability, we only need to examine ζ corresponding to the ellipse-like curve.

Again, we consider only values of ζ in the upper-half plane. Specifically, we consider

values of ζ ranging from −|ζt2| to |ζt2|, moving from the blue cross in the second

quadrant to the blue cross in the first quadrant of Figure 3.7(g). At −|ζt2|, µT (k) =

−2iI(−|ζt2|), and Re(λ) = 0. As ζ moves from −|ζt2| to |ζt2|, µT (k) monotonically

increases (Lemma 3.9.1) until it reaches µT (k) = −2iI(|ζt2|) at ζ = |ζt2|, with Re(λ) =

0, see the ellipse-like curve in Figure 3.9(b). Because of the symmetries of I(ζ) for

ζ ∈ R we have that µT (k) = −2iI(|ζt2|) = 2iI(−|ζt2|). Along this curve Re(λ) 6= 0

so again by the intermediate value theorem at some point between −|ζt2| and |ζt2|,

µT (k) = 0 with Re(λ) > 0.

3.9.2 Superluminal librational solutions

Theorem 3.9.3. The superluminal librational solutions to (3.1) are stable with respect to

subharmonic perturbations of period PT (k) if they satisfy the condition

−2iI(−|ζt|) ≥
(P − 1)π

P
, (3.130)

for P odd, and

−2iI(−|ζt|) ≥
(P − 2)π

P
, (3.131)

for P even.

Proof. For stability with respect to perturbations of period PT (k) we need that for µT (k) =

2πm/P , the spectral elements λ ∈ σL have zero real part, i.e., for µT (k) = 0, 2π
P
, . . . , 2π(P−1)

P
,

Re(λ) = 0.
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Figure 3.10: A plot of parameter space showing the spectral stability of superluminal libra-
tional solutions with respect to various subharmonic perturbations. Within the superluminal
librational region, all solutions left of curve 2 are stable with respect to perturbations of twice
the period as well as perturbations of the same period, all solutions left of curve 4 are stable
with respect to perturbations of four times the period, all solutions left of curve 6 are stable
with respect to perturbations of six times the period as well as perturbations of three times
the period, etc.
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We examine ζ ∈ σL, in the figure 8 case, see Figure 3.7(a). The figure 8 spectrum is

double covered, so, without loss of generality, we consider only values of ζ in the left-half

plane. Specifically we consider values of ζ ranging from ζ3 to ζ2 passing along the level curve

through ζ = −|ζt|. At ζ3, µT (k) = π and Re(λ) = 0. As ζ moves from ζ3 to −|ζt|, µT (k)

monotonically decreases (Lemma 3.9.1) until it reaches µtT (k) = −2iI(−|ζt|) at ζ = −|ζt|.

At −|ζt|, Re(λ) = 0. Note that we are only considering the lower-left quarter plane. The

analysis for ζ ranging from ζ1 to |ζt| is symmetric in µT (k).

Qualitatively, we have figure 8s centered at µT (k) = π+2πn and extending over [µtT (k)+

2πn, π + (π − µtT (k)) + 2πn], see Figure 3.9(c,d). Since we are considering µ ∈ [0, 2π) it

suffices to examine the figure 8 centered at π with n = 0.. For stability, we need the left-most

edge of the figure 8 to be to the right of (P−1)π
P

for P odd and to the right of (P−2)π
P

for P

even. Similarly, we need the right-most edge of the figure 8 to be to the left of (P+1)π
P

for P

odd and to the left of (P+2)π
P

for P even. These conditions are for P odd:

µtT (k) ≥ (P − 1)π

P
and π + (π − µtT (k)) ≤ (P + 1)π

P
, (3.132)

and for P even:

µtT (k) ≥ (P − 2)π

P
and π + (π − µtT (k)) ≤ (P + 2)π

P
. (3.133)

These conditions simplify to give (3.130) and (3.131) respectively.

We remark that for a given odd P the condition (3.130) is the same as the condition

(3.131) for 2P . Thus, for superluminal librational waves if we have stability with respect to

perturbations of some odd multiple P of the period T (k) we also have stability with respect

to perturbations of 2PT (k). This is shown in the case when P = 3 in Figure 3.11(a). These

results are summarized in Figure 3.10 where we plot only the condition (3.131). We remark

that it is possible for solutions to be stable with respect to perturbations of four times the

period but not with respect to three times the period. Solutions of this type would lie to

the left of curve 4 but to the right of curve 6 in Figure 3.10. More generally it is possible to
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Figure 3.11: The real part of the spectrum Re(λ) (vertical axes) as a function of µT (k)
(horizontal axes): µT (k) = 2mπ/P for integers m and P corresponds to perturbations of
period P times the period of the underlying solution. (a) The superluminal solution is stable
with respect to perturbations of three times its period is necessarily stable with respect to
perturbations of six times its period. (b) If a superluminal rotational solution is stable with
respect to perturbations of five times its period, it is stable with respect to perturbations of
three times its period or perturbations of two times its period. (i) If the ellipse-like curves
are in (4π/5, 6π/5) they are necessarily in (2π/3, 4π/3) (red), (ii) if the ellipse-like curves
are in (2π/5, 4π/5) and (6π/5, 8π/5) they are necessarily in (0, π) and (π, 2π) respectively
(blue), (iii) if the ellipse-like curves are in (0, 2π/5) and (8π/5, 2π) they are necessarily in
both (0, π) and (π, 2π) respectively as well as (0, 2π/3) and (2π/3, 4π/3) respectively (black).
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have solutions which are stable with respect to p times the period but not with respect to q

times the period where p is even and less than q < p < 2q.

3.9.3 Superluminal rotational solutions

Theorem 3.9.4. The superluminal rotational solutions to (3.1) are stable with respect to

subharmonic perturbations of period PT (k) if they simultaneously satisfy the conditions

2πn− 2iI(−|ζt|) ≤
2π(m+ 1)

P
, (3.134)

2πn− 2iI(|ζp|i) ≥
2πm

P
, (3.135)

for some n ∈ Z and some m ∈ {0, 1, . . . , P−1}. Note that Re (I(−|ζt|)) = 0 and Re (I(|ζp|i)) =

0.

Proof. For stability with respect to perturbations of period PT (k) we need that for µT (k) =

2πm/P , the spectral elements λ ∈ σL have zero real part for all m ∈ {0, 1, . . . , P − 1}.

We examine ζ ∈ σL, in the case where we have ellipse-like curves in the upper- and

lower-half planes, see Figure 3.7(d). As in Theorem 3.9.3, using symmetries we restrict

ourselves to ζ in the upper-left quarter plane. Specifically we consider values of ζ ranging

from −|ζt| to |ζp|i. At −|ζt|, µT (k) = −2iI(−|ζt|) and Re(λ) = 0. As ζ moves from −|ζt| to

|ζp|i, µT (k) monotonically decreases (Lemma 3.9.1) until it reaches µtT (k) = −2iI(|ζp|i) at

ζ = |ζp|i. At |ζp|i, Re(λ) = 0.

Qualitatively, we have an ellipse-like curve beginning at −2iI(−|ζt|)+2πn and extending

to −2iI(|ζp|i)+2πn, see Figure 3.9(g,h). The only values of µT (k) with Re(λ) > 0 lie within

the range (2iI(|ζp|i) + 2πn, 2iI(−|ζt|) + 2πn). So if (2iI(|ζp|i) + 2πn, 2iI(−|ζt|) + 2πn) ⊂

(2πm
P
, 2π(m+1)

P
), for some m ∈ {0, 1, . . . , P − 1}, then Re(λ) = 0 for µT (k) = 2πm/P for all

m ∈ {0, 1, . . . , P − 1}.

Thus for stability we need the right-most edge of each of these ellipse-like curves to be

to the left of 2π(m + 1)/P , and the left-most edge of each of these ellipse-like curves to be
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Figure 3.12: A plot of the superluminal rotational region of parameter space showing the
spectral stability with respect to various subharmonic perturbations. Parameter space is
rescaled using the elliptic modulus k =

√
2/E, to show the extent of the curves as E →∞.

Solutions within the blue (light blue, green, yellow, red) region are stable with respect to
perturbations of one (two, three, four, five) times the period respectively.

to the right of 2πm/P for some m ∈ {0, 1, . . . , P − 1}. This gives us conditions (3.134) and

(3.135).

These results are summarized in Figure 3.12. We choose to rescale parameter space using

the elliptic modulus k =
√

2/E, to show the extent of the subharmonic stability regions as

E →∞. We only show regions for P = 1, 2, 3, 4, 5 for the sake of clarity.

We see that there are many disjoint regions of subharmonic stability for each value of

P corresponding to the various choices for m. Within each disjoint region of stability for

same period perturbations (blue) there are P disjoint regions of stability with respect to

perturbations of P times the period. This follows directly from the conditions (3.134) and

(3.135). We note the possibility of solutions which are stable with respect to three times

the period of the solution but not with respect to two times the period of the solution. An
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example of what µT (k) looks like in this case is shown in Figure 3.9(h) with c = 2.1, E =

6.8, k = 0.542326. Indeed it is possible to have solutions which are stable with respect to p

times the period of the solution but not with respect to q times the period of the solution for

any p > q where q - p. From Figure 3.12 we notice that if a solution is stable with respect to

perturbations of five times the period (red) it is stable with respect to either perturbations

of two times the period (light blue) or three times the period (green). This is proved by a

simple topological argument shown in Figure 3.11(b) and explained in the caption.

3.10 Conclusion

In this chapter, the methods of [27] are used to examine and explicitly determine the stability

spectrum of the stationary solutions of the sine-Gordon equation. As in [27], we demonstrate

that the parameter space for the stationary solution separates in different regions where the

topology of the spectrum is different. An additional subdivision of this parameter space is

found for superluminal waves when considering the stability of the solutions with respect

to subharmonic perturbations of a specific period. We find solutions which are stable with

respect to perturbations of p times the period but unstable with respect to q times the period,

where p < q.
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Chapter 4

CONCLUSION AND FUTURE WORK

In this thesis, I have taken the next step in an ongoing research program of analyzing

the stability of periodic solutions of integrable equations. Our methods rely on the squared

eigenfunction connection [1] and the existence of an infinite sequence of conserved quantities,

as described below. Thus far, the following results have been obtained:

• The KdV equation. In [11], the squared eigenfunction connection was used to

establish the spectral stability of the periodic traveling waves of the KdV equation with

respect to perturbations that are bounded on the whole line (periodic, quasi-periodic,

or linear superpositions of such). This result was built on in [23] to establish the orbital

stability of these solutions with respect to subharmonic perturbations of any period,

using an extra conserved quantity as an appropriate Lyapunov function. This method,

employing all conserved quantities, was extended to establish the orbital stability of the

periodic finite-gap solutions of the equation in [26], again with respect to subharmonic

perturbations.

• The defocusing mKdV equation. In [26], the method of [11] was adapted to

the defocusing modified KdV equation to prove the spectral stability of the periodic

traveling waves with respect to bounded perturbations.

• The defocusing NLS equation. In [12], the squared eigenfunction connection was

employed to show the spectral stability of the stationary solutions of the defocusing

NLS equation. Orbital stability with respect to subharmonic perturbations is also

demonstrated in [12], again requires the use of an additional conserved quantity.
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• The focusing NLS equation. In Chapter 2 and in [27], the method of [11] and [12] is

used to examine the stability spectrum of the stationary solutions of the focusing NLS

equation. Because the underlying Lax pair is not self adjoint, the application of the

method does not simplify as it does for the above equations. Unbridled use of elliptic

function identities allows for the explicit determination of the spectrum, demonstrating

spectral instability for all stationary (non-soliton) solutions. We demonstrate that the

parameter space for the stationary solution separates in different regions where the

topology of the spectrum is different. An additional subdivision of this parameter space

is found when considering the stability of the solutions with respect to subharmonic

perturbations of a specific period, leading to the conclusion of spectral stability of some

solutions with respect to some smaller classes of physically relevant perturbations.

• The sine-Gordon equation. In Chapter 3 and in [25], the methods of [27] are used to

examine and explicitly determine the stability spectrum of the stationary solutions of

the sine-Gordon equation. As in [27], we demonstrate that the parameter space for the

stationary solution separates in different regions where the topology of the spectrum is

different. An additional subdivision of this parameter space is found for superluminal

waves when considering the stability of the solutions with respect to subharmonic

perturbations of a specific period. We find solutions which are stable with respect to

perturbations of p times the period but unstable with respect to q times the period,

where p < q.

Many directions for future research remain. Building on the work in Chapters 2 and 3, I

hope to extend these results to study the transverse spectral stability of periodic traveling

waves in the Kadomtsev-Petviashvili equation [5, 40, 43]. Future work could also consider

the modified Korteweg-de Vries equation (mKdV) [69] the Benjamin-Ono equation [31], and

the Boussinesq equation [21] as well. Each of these equations come with different challenges,

and deriving a condition for the stability spectrum for elliptic solutions may not be as

simple as shown here. That said, the mKdV equation has Lax pairs in the AKNS form [1]
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similar to NLS and SG and the techniques used in this thesis should extend easily. For the

Benjamin-Ono equation, the Lax pair is defined in a piecewise manner, and for the Boussinesq

equation, the Lax pair is consists of three by three matrices instead of two by two matrices.

Using techniques of [12, 26], another avenue of research is extending the spectral stability

results of Sections 2.9 and 3.9 to orbital stability [28].
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[13] E. M. Bour. Théorie de la déformation des surfaces. Journal de L’école Impériale
Polytechnique, 22:1–148, 1862.

[14] W. E. Boyce and R. C. DiPrima. Elementary differential equations and boundary value
problems. John Wiley & Sons, Inc., New York, 1965.

[15] R. J. Buckingham and P. D. Miller. Exact solutions of semiclassical non-characteristic
Cauchy problems for the sine-Gordon equation. Phys. D, 237(18):2296–2341, 2008.

[16] R. J. Buckingham and P. D. Miller. The sine-Gordon equation in the semiclassical limit:
dynamics of fluxon condensates. Mem. Amer. Math. Soc., 225(1059):vi+136, 2013.

[17] P. F. Byrd and M. D. Friedman. Handbook of elliptic integrals for engineers and physi-
cists. Springer-Verlag, Berlin, 1954.

[18] L. D. Carr, C. W. Clark, and W. P. Reinhardt. Stationary solutions of the
one-dimensional nonlinear Schrödinger equation. ii. Case of attractive nonlinearity.
Physical Review A, 62:063611, 2000.

[19] F. F. Chen. Introduction to Plasma Physics and Controlled Fusion. Plenum Press, New
York, 1984.

[20] S. Coleman. Quantum sine-gordon equation as the massive Thirring model. Phys. Rev.
D, 11:2088–2097, 1975.

[21] R. Conte and M. Musette. The Painlevé handbook. Springer, Dordrecht, 2008.

[22] T. Dauxois and M. Peyrard. Physics of solitons. Cambridge University Press, Cam-
bridge, 2006.

[23] B. Deconinck and T. Kapitula. The orbital stability of the cnoidal waves of the
Korteweg–de Vries equation. Physics Letters A, 374:4018–4022, 2010.

[24] B. Deconinck and J. N. Kutz. Computing spectra of linear operators using the Floquet–
Fourier–Hill method. Journal of Computational Physics, 219:296–321, 2006.

[25] B. Deconinck, P. McGill, and B. L. Segal. The stability spectrum for elliptic solutions
to the sine-Gordon equation. Submitted for publication, 2017.



98

[26] B. Deconinck and M. Nivala. The stability analysis of the periodic traveling wave
solutions of the mKdV equation. Stud. Appl. Math., 126(1):17–48, 2011.

[27] B. Deconinck and B. L. Segal. The stability spectrum for elliptic solutions to the focusing
NLS equation. Physica D: Nonlinear Phenomena, 346:1–19, 2017.

[28] B. Deconinck, B. L. Segal, and J. Upsal. The stability of stationary solutions of the
focusing NLS equation with respect to subharmonic perturbations. In progress, 2017.

[29] G. Derks, A. Doelman, S. A. van Gils, and T. Visser. Travelling waves in a singularly
perturbed sine-Gordon equation. Phys. D, 180(1-2):40–70, 2003.

[30] D. Duval. Rational puiseux expansions. Compositio mathematica, 70:119–154, 1989.

[31] A. S. Fokas and M. J. Ablowitz. The inverse scattering transform for the Benjamin-Ono
equation – a pivot to multidimensional problems. Studies in Applied Mathematics,
68:1–10, 1983.

[32] J. Frenkel and T. Kontorova. On the theory of plastic deformation and twinning. Acad.
Sci. U.S.S.R. J. Phys., 1:137–149, 1939.
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