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a b s t r a c t

We present an analysis of the stability spectrum for all stationary periodic solutions to the sine-Gordon
equation. An analytical expression for the spectrum is given. From this expression, various quantitative
and qualitative results about the spectrumare derived. Specifically, the solution parameter space is shown
to be split into regions of distinct qualitative behavior of the spectrum, in one of which the solutions are
stable. Additional results on the spectral stability of solutions with respect to perturbations of an integer
multiple of the solution period are given.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The sine-Gordon equation in laboratory coordinates is given by

utt − uxx + sin u = 0. (1)

Here, u(x, t) is a real-valued function. This equation was first introduced to study surfaces of constant Gaussian curvature in light
cone form [1]. Since its introduction it has appeared in various applications including the description of the magnetic flux in long
superconducting Josephson junctions [2–4], themodeling of fermions in the Thirringmodel [5], the study of the stability of structures found
in galaxies [6–8], mechanical vibrations of a ribbon pendulum [9], propagation of crystal dislocation [10], propagation of deformations
along DNA double helix [11], among others. A comprehensive discussion of many of these applications is found in the review paper by
Barone [12].

We consider general traveling wave solutions to (1). Defining z = x − ct, τ = t , and introducing v(z, τ ) = u(x, t),

(c2 − 1)vzz − 2cvzτ + vττ + sin(v) = 0. (2)

For subsequent discussion we assume that c ̸= 1. We proceed to look for stationary solutions to (2) of the form

v(z, τ ) = f (z), (3)
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(a) Subluminal: c2 < 1. (b) Superluminal: c2 > 1.

Fig. 1. Phase portraits of the solutions showing both librational waves (closed orbits inside the separatrix) in yellow for (a) and green for (b) and rotational waves (orbits
outside the separatrix) in blue for (a) and red for (b). The separatrix is denoted in purple. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

leading to

(c2 − 1)f ′′(z) + sin (f (z)) = 0, (4)

where ′ denotes a derivative with respect to z. Integrating once,
1
2
(c2 − 1)f ′(z)2 + 1 − cos (f (z)) = E, (5)

where E is a constant of integration referred to as the total energy. The stationary solutions in this paper are the elliptic solutions to (5)
and their limits. These solutions are periodic in z and limit to the well-known kink solutions as their period goes to infinity [13,14].

We call stationary solutions f (z) with waves speeds satisfying c2 < 1 (respectively c2 > 1) subluminal (superluminal). Representative
phase portraits of subluminal and superluminal solutions to (5) are shown in Fig. 1. Additionally, we call solutions f (z) whose orbits in
phase space lie within the separatrix librational, and those whose orbits lie outside the separatrix rotational. This distinction is illustrated
in Fig. 1 in both the subluminal and superluminal cases. Librational waves correspond to E ∈ (0, 2). For rotational waves, E < 0 for
subluminal waves and E > 2 for superluminal waves.

Scott [15] was the first to study the stability of periodic traveling wave solutions to (1). He classified subluminal rotational waves as
spectrally stable and determined spectral instability for all other types of waves, but these instability results were based on an incorrect
claim that the spectrum in all cases was strictly confined to the real and imaginary axes. His proof has been corrected [16] and extended to
theKlein–Gordon equation [17]. Using entirely differentmethods,we confirm the results in [16] and explicitly characterize all of parameter
space. We also provide stability results for solutions perturbed by integer multiples of their fundamental period.

In Section 2we present the elliptic solutions to (5) in Jacobi elliptic form from [16], and then reformulate the solutions intoWeierstrass
elliptic form. In Sections 3–5, using the samemethods as [18–21], we exploit the integrability of (1) to associate the spectrum of the linear
stability problemwith the Lax spectrum using the squared eigenfunction connection [22]. This allows us to obtain an analytical expression
for the spectrum of the operator associated with the linearization of (1) in the form of a condition on the real part of an integral over one
period of some integrand. Similar to [21], we proceed by integrating the integrand explicitly in Section 6. Next, using the expressions
obtained, we prove results concerning the location of the stability spectrum on the imaginary axis in Section 7. In Section 8, we present
analytical results about the spectrum, and we make use of the integral condition to split parameter space into different regions where
the spectrum shows qualitatively different behavior. Finally, in Section 9 we examine the spectral stability of solutions with respect to
perturbations of an integer multiple of their fundamental period and prove various stability results.

2. Elliptic solutions

The derivation of the solutions is presented in the appendix of [16]. We limit our presentation to what is necessary for the following
sections. For solutions to be real and nonsingular for real z we require the following constraints:

subluminal, rotational: 0 ≤ |c| < 1, E < 0, (6)
superluminal, rotational: |c| > 1, E > 2, (7)
subluminal, librational: 0 ≤ |c| < 1, 0 < E ≤ 2, (8)

superluminal, librational: |c| > 1, 0 < E ≤ 2. (9)

Solutions to (5) are of the form

cos (f (z)) = α + βsn2(λz, k), (10)
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Fig. 2. Subregions of Parameter space. Colors correspond to solutions in Fig. 1. Blue: subluminal rotational (0 ≤ |c| < 1, E < 0), orange: subluminal librational
(0 ≤ |c| < 1, 0 < E ≤ 2), green: superluminal librational (|c| > 1, 0 ≤ E < 2), red: superluminal rotational (0 ≤ |c| > 1, E > 2). Subregions extend to infinity
in directions of arrows. Subluminal kink solutions occur for E = 0, 0 ≤ |c| < 1, and superluminal kink solutions occur for E = 2, |c| > 1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

with the following parameter values for the various cases:

subluminal, rotational: α = −1, β = 2, λ =

√
2 − E

2(1 − c2)
, k =

√
2

2 − E
, (11)

superluminal, rotational: α = 1, β = −2, λ =

√
E

2(c2 − 1)
, k =

√
2
E

, (12)

subluminal, librational: α = −1, β = 2 − E, λ =

√
1

1 − c2
, k =

√
2 − E
2

, (13)

superluminal, librational: α = 1, β = −E, λ =

√
1

c2 − 1
, k =

√
E
2
. (14)

Here sn(x, k) is the Jacobi elliptic sn function with elliptic modulus k [23–26]. We are neglecting to include a horizontal shift in z. This
additional parameter does not change the qualitative results and it is not included here.

Of some importance are the limits of these solutions on the boundaries of their regions of validity. On the boundaries for subluminal
waves and superluminalwaves the rotational and librational solutions limit to kink solutions. For subluminalwaves that limit occurswhen
E = 0:

cos (f (z)) = −1 + 2tanh2
(

z
√
1 − c2

)
, (15)

while for superluminal waves the limit is when E = 2:

cos (f (z)) = 1 − 2tanh2
(

z
√
c2 − 1

)
. (16)

These solutions are seen as the separatrices in Fig. 1 in purple and are on the purple curves in parameter space in Fig. 2. The other limits
for librational waves are when solutions limit to a constant. In the subluminal cases this occurs when E = 2 and cos (f (z)) = −1, or in the
superluminal case when E = 0 and cos (f (z)) = 1. For a general solution which is not on the boundary in parameter space, the solutions
in (11)–(14) are periodic in z with period 2K(k)/λ where

K(k) =

∫ π/2

0

1√
1 − k2sin2y

dy, (17)

the complete elliptic integral of the first kind.
We reformulate our elliptic solutions to (1) using Weierstrass elliptic functions [26] rather than Jacobi elliptic functions. This will

simplify working with the integral condition (54) in Section 4, as formulas for integrating Weierstrass elliptic functions are well
documented [23,27]. It is important to note that nothing is lost by switching to Weierstrass elliptic functions, as we can map any
Weierstrass elliptic function to a Jacobi elliptic function, and vice versa [21,26]. Let

℘(z + ω3, g2, g3) − e3 =

(
K(k)k
ω1

)2

sn2
(
K(k)z
ω1

, k
)

, (18)

with g2 and g3 the lattice invariants of the Weierstrass ℘ function, e1, e2, and e3 the zeros of the polynomial 4t3 − g2t − g3, and ω1 and ω3
the half-periods of the Weierstrass lattice given by

ω1 =

∫
∞

e1

dz√
4z3 − g2z − g3

, (19)
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ω3 = i
∫

∞

−e3

dz√
4z3 − g2z + g3

. (20)

Using (18) we convert our general solution in terms of Jacobi elliptic functions (10) to one in terms of Weierstrass elliptic functions:

cos (f (z)) = α +
β

k2λ2 (℘(z + ω3, g2, g3) − e3) , (21)

with

g2 =
4
3

(
1 − k2 + k4

)
λ4, (22)

g3 =
4
27

(
2 − 3k2 − 3k4 + 2k6

)
λ6, (23)

e1 =
1
3

(
2 − k2

)
λ2, e2 =

1
3

(
−1 + 2k2

)
λ2, e3 =

1
3
(−1 − k2)λ2, (24)

ω1 =
K(k)
λ

, ω3 =
iK′(k)

λ
, (25)

where K′(k) is the complement to K(k) given by K′(k) = K(1 − k2). For all cases,

g2 =
4 − 2E + E2

3(c2 − 1)2
, (26)

g3 =
8 − 6E − 3E2

+ E3

27(c2 − 1)3
. (27)

Onemotivation for usingWeierstrass elliptic functions instead of Jacobi elliptic functions is that there is a unique expression for the lattice
invariants g2 and g3 see (26)–(27) which holds for all cases, as opposed to Jacobi elliptic functions where a different elliptic modulus k is
used for each case see (11)–(14). The zeros of the polynomial 4s3 − g2s − g3 are

s =
E − 1

3(c2 − 1)
, s =

E + 2
6(1 − c2)

, s =
4 − E

6(c2 − 1)
. (28)

These roots correspond to e1, e2, and e3 where e1 > e2 > e3. For the various cases:

subluminal, rotational: e1 =
E − 1

3(c2 − 1)
, e2 =

E + 2
6(1 − c2)

, e3 =
4 − E

6(c2 − 1)
, (29)

superluminal, rotational: e1 =
E − 1

3(c2 − 1)
, e2 =

4 − E
6(c2 − 1)

, e3 =
E + 2

6(1 − c2)
, (30)

subluminal, librational: e1 =
E + 2

6(1 − c2)
, e2 =

E − 1
3(c2 − 1)

, e3 =
4 − E

6(c2 − 1)
, (31)

superluminal, librational: e1 =
4 − E

6(c2 − 1)
, e2 =

E − 1
3(c2 − 1)

, e3 =
E + 2

6(1 − c2)
. (32)

3. The linear stability problem

To examine the linear stability of our solutions, we consider

v(z, τ ) = f (z) + ϵw(z, τ ) + O
(
ϵ2) , (33)

where ϵ is a small parameter. Substituting (33) into (2), we obtain at order ϵ

(c2 − 1)wzz − 2cwzτ + wττ + cos (f (z)) w = 0. (34)

Letting w1(z, τ ) = w(z, τ ) and w2(z, τ ) = wτ (z, τ ) we rewrite (34) as a first-order system of equations

∂

∂τ

(
w1
w2

)
= L

(
w1
w2

)
=

(
0 1

−(c2 − 1)∂2
z − cos (f (z)) 2c∂z

)(
w1
w2

)
. (35)

An elliptic solution f (z) is linearly stable if for all ϵ > 0 there exists a δ > 0 such that if ∥w(z, 0)∥ < δ then ∥w(z, τ )∥ < ϵ for all τ > 0.
This definition depends on the choice of norm ∥ · ∥, which is specified in the definition of the spectrum in (38).

Since (35) is autonomous in τ , we separate variables to look for solutions of the form(
w1(z, τ )
w2(z, τ )

)
= eλτ

(
W1(z)
W2(z)

)
, (36)

resulting in the spectral problem

λ

(
W1
W2

)
= L

(
W1
W2

)
=

(
0 1

−(c2 − 1)∂2
z − cos (f (z)) 2c∂z

)(
W1
W2

)
. (37)
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Here

σL = {λ ∈ C : max
x∈R

(|W1(x)|, |W2(x)|) < ∞}, (38)

or

σL = {λ ∈ C : W1,W2 ∈ C0
b (R)}. (39)

For spectral stability, we need to demonstrate that the spectrum σL does not enter the open right half of the complex λ plane. Since (1)
is Hamiltonian [28], the spectrum of its linearization is symmetric with respect to both the real and imaginary axes [29]. In other words,
proving spectral stability for elliptic solutions to (1) amounts to proving that the stability spectrum lies strictly on the imaginary axis.
We show that the elliptic solutions are spectrally stable only in the subluminal rotational case. We demonstrate spectral elements in the
right-half plane near the origin for all choices of the parameters E and c outside the subluminal rotational regime.

4. The lax problem

We wish to obtain an analytical representation for the spectrum σL. As mentioned in the introduction, this analytical representation
comes from the squared eigenfunction connection between the linear stability problem (37) and the Lax pair of (1). The Lax pair for
sine-Gordon is well known [22,28,30,31]. The compatibility condition χxt = χtx of the Lax pair,

χx =

⎛⎜⎝ −
iζ
2

+
i cos(u)

8ζ
i sin(u)
8ζ

−
1
4

(ux + ut)

i sin(u)
8ζ

+
1
4

(ux + ut)
iζ
2

−
i cos(u)

8ζ

⎞⎟⎠χ, (40)

χt =

⎛⎜⎝ −
iζ
2

−
i cos(u)

8ζ
−

i sin(u)
8ζ

−
1
4

(ux + ut)

−
i sin(u)
8ζ

+
1
4

(ux + ut)
iζ
2

+
i cos(u)

8ζ

⎞⎟⎠χ, (41)

is (1). We transform the Lax pair by moving into a traveling reference frame letting z = x − ct, τ = t, and v(z, τ ) = u(x, t). Additionally,
to examine the stationary solutions we let v(z, τ ) = f (z) so that

χz =

(
C D

−D†
−C

)
χ, (42)

χτ =

(
A B

−B†
−A

)
χ, (43)

where † represents the Schwarz conjugate: A†(ζ ) = (A(ζ ∗))∗, where ∗ is the complex conjugate, and

A = −
i
(
4(1 + c)ζ 2

− (c − 1) cos(f (z))
)

8ζ
, (44)

B =
(c − 1)

(
i sin(f (z)) + 2(c + 1)ζ f ′(z)

)
8ζ

, (45)

C = −
iζ
2

+
i cos(f (z))

8ζ
, (46)

D =
i sin(f (z))

8ζ
−

f ′(z)
4

+
cf ′(z)
4

, (47)

whose compatibility condition χzτ = χτ z is (4). We define σL, or informally the Lax spectrum, as the set of all ζ for which (42) has a
bounded (in z) solution. Examining (43), since A and B are independent of τ , we separate variables. Let

χ (z, τ ) = eΩτϕ(z), (48)

with Ω being independent of τ , but possibly depending on z. Substituting (48) into (43) and canceling the exponential, we find(
A − Ω B
−B†

−A − Ω

)
ϕ = 0. (49)

To have nontrivial solutions, we require the determinant of (49) to be zero. Using the definitions of A and B, we get

Ω2
= A2

− BB†
=

1
64

(
−8(c2 − 1)(E − 1) −

(c − 1)2

ζ 2 − 16(c + 1)2ζ 2
)

. (50)

As expected, Ω is independent of both τ (by construction) and z (by integrability). Thus Ω is strictly a function of ζ and the solution
parameters c and E. We remark that Ω takes the form (50) for all values of c and E regardless of where we are in parameter space.

To satisfy (49), we let

ϕ(z) = γ (z)
(

−B(z)
A(z) − Ω

)
, (51)
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where γ (z) is a scalar function. By construction of ϕ(z), χ (z, τ ) satisfies (43). By the compatibility of (42) and (43), it is possible to choose
γ (z) such that χ also satisfies (42). Indeed, γ (z) satisfies a first-order linear equation, whose solution is given by

γ (z) = γ0 exp
(∫

−C(A − Ω) + BD†
− Az

A − Ω
dz
)

. (52)

For almost every ζ ∈ C, we have explicitly determined the two linearly independent solutions of (42), i.e., those corresponding to the
positive and negative signs ofΩ in (50). AssumingΩ ̸= 0 these two solutions are, by construction linearly independent. In the case where
ζ is a root of Ω, the second solution to (42) can be determined via the reduction-of-order method.

Since (42) and (43) share eigenfunctions, we have

σL = {ζ ∈ C : ϕ(z) ∈ C0
b (R)}. (53)

The vector part of ϕ is bounded for all z, so we only need that the scalar function γ (z) is bounded as z → ±∞. A necessary and sufficient
condition for this is⟨

Re
(

−C(A − Ω) + BD†
− Az

A − Ω

)⟩
= 0, (54)

where ⟨·⟩ is the average over one period 2K(k) of the integrand, and Re denotes the real part. The integral condition (54) completely
determines the Lax spectrum σL.

5. The squared eigenfunction connection

A connection between the eigenfunction of the Lax pair (42) and (43) and the eigenfunctions of the linear stability problem (37) using
squared eigenfunctions is well known [22]. We prove the following theorem.

Theorem 5.1. The sum of squares,

w(z, τ ) = χ1(z, τ )2 + χ2(z, τ )2, (55)

satisfies the linear stability problem (34) for f (z). Here χ = (χ1, χ2)T is any solution of (42)– (43).

Proof. The proof is done by direct calculation. Substitute w(z, τ ) into the left-hand side of (34). Eliminate z-derivatives of χ1 and χ2 (up
to order 2) using (42) and eliminate τ -derivatives of χ1 and χ2 (up to order 2) using (43). The resulting expression for the left-hand side is
0, thus demonstrating that (34) is satisfied, finishing the proof. □

To establish the connection between σL and σL, we examine the right- and left-hand sides of (36). Substituting (55) and (48) into the
left hand side of (36) we find

e2Ωτ

(
ϕ2
1 + ϕ2

2
2Ω

(
ϕ2
1 + ϕ2

2

)) = eλτ

(
W1(z)
W2(z)

)
, (56)

so we conclude that

λ = 2Ω(ζ ), (57)

with eigenfunctions given by(
W1(z)
W2(z)

)
=

(
ϕ2
1 + ϕ2

2
2Ω

(
ϕ2
1 + ϕ2

2

)) . (58)

This gives the connection between the σL spectrum and the σL spectrum. It is also necessary to check that indeed all solutions of (37) are
obtained through (56). This is not shown explicitly here, but is done analogous to the work in [18,19].

Although in principle the above construction determines σL, it remains to be seen whether this determination is practical. In the
following section we discuss a technique for explicitly integrating (54) using Weierstrass elliptic functions, leading to a more explicit
characterization of σL.

6. The Lax spectrum in terms of elliptic functions

In terms of Weierstrass elliptic functions, (54) becomes

Re
∫ 2ω1

0

−C(A − Ω) + BD†
− Az

A − Ω
dz = 0, (59)

with A, B, C, and D given in (46)–(47). Substituting in for f (z) using (21) we find that (59) is

Re
∫ 2ω1

0

C1 + C2℘(z) + C3℘
′(z)

C4 + C5℘(z)
dz = 0, (60)
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with℘(z) = ℘(z+ω3, g2, g3) with the dependence onω3, g2, and g3 suppressed. The Cj’s depend on ζ but are independent of z. LikeΩ(ζ ),
the Cj’s take one form regardless of where the solution is in parameter space. They are given by

C1 =
1
3

(
−3i − 16i(E − 1)ζ 2

+ 48iζ 4
+ 3ic

(
1 + 8(E − 1)ζ 2

+ 16ζ 4)
+
(
8(e − 1)ζ + 96ζ 3)Ω(ζ )

)
, (61)

C2 = 16(c2 − 1)ζ (iζ + Ω(ζ )) , (62)

C3 = −8(c − 1)2(c + 1)ζ , (63)

C4 =
8
3
ζ
(
(c − 1)(E − 1) + 12(c + 1)ζ 2

− 24iζΩ(ζ )
)
, (64)

C5 = 16(c − 1)2(c + 1)ζ . (65)

We evaluate the integral in (60) explicitly [27]. We find

Re
[
2ω1C2

C5
+

4 (C1C5 − C2C4)

℘ ′(ρ)C2
5

(ζw(ρ)ω1 − ζw(ω1)ρ)

]
= 0, (66)

with

ρ = ρ(ζ ) = ℘−1
(

−
C4(ζ )
C5(ζ )

, g2, g3

)
, (67)

and ζw is the Weierstrass Zeta function [26]. Note that ℘−1 is a multivalued function, but for our analysis ρ is chosen as any value such
that ℘(ρ) = −C4(ζ )/C5(ζ ). Substituting for the Cj’s (66) becomes

Re

[
2ω1 (iζ + Ω(ζ ))

c − 1
+

4ζ
(
−i(c − 1)(E − 1) − 4i(c + 1)ζ 2

− 8ζΩ(ζ )
)

(c − 1)3(c + 1)℘ ′(ρ)
(ζw(ρ)ω1 − ζw(ω1)ρ)

]
= 0. (68)

We simplify this further by recognizing that

℘ ′2(ρ) = 4℘3(ρ) − g2℘(ρ) − g3 = 4
(

−
C4(ζ )
C5(ζ )

)3

− g2

(
−

C4(ζ )
C5(ζ )

)
− g3. (69)

Substituting in for C4(ζ ) and C5(ζ ) gives

℘ ′2(ρ) = 4

(
ζ
(
−i(c − 1)(E − 1) − 4i(c + 1)ζ 2

− 8ζΩ(ζ )
)

(c − 1)3(c + 1)

)2

. (70)

Thus (68) simplifies to

Re
(
2ω1 (iζ + Ω(ζ ))

c − 1
+ 2ν (ζw(ρ)ω1 − ζw(ω1)ρ)

)
= 0, (71)

where

ν =

⎧⎪⎨⎪⎩+1 if −
π

2
< arg

(
ζ
(
−i(c − 1)(E − 1) − 4i(c + 1)ζ 2

− 8ζΩ(ζ )
)

(c − 1)3(c + 1)

)
≤

π

2
,

−1 otherwise.
(72)

Using (25), and applying the formula for theWeierstrass ζ function evaluated at a half period [23], ζw(ω1) =
√
e1 − e3

(
E(k) −

e1
e1−e3

K(k)
)

,

(71) becomes

Re
[
2K(k) (iζ + Ω(ζ ))

c − 1
+ 2ν

(
ζw(ρ)K(k) −

√
e1 − e3

(
E(k) −

e1
e1 − e3

K(k)
)

ρ

)]
= 0. (73)

Here

E(k) =

∫ π/2

0

√
1 − k2sin2y dy, (74)

is the complete elliptic integral of the second kind. We have simplified the integral condition (59) significantly. Thus ζ ∈ σL if and only if
(73) is satisfied. To simplify notation, let

I(ζ ) =
2ω1 (iζ + Ω(ζ ))

c − 1
+ 2ν (ζw(ρ)ω1 − ζw(ω1)ρ) , (75)

so that (73) is

Re [I(ζ )] = 0. (76)

Next, we wish to examine the level sets of the left-hand side of (76). To this end, we differentiate I(ζ ) with respect to ζ . To evaluate this
derivative we use the chain rule and note that

∂

∂ζ
ζw(ρ) = −℘(ρ)

∂ρ

∂ζ
=

C4(ζ )
C5(ζ )

d℘−1

dζ

(
−

C4(ζ )
C5(ζ )

, g2, g3

)(
−

C4(ζ )
C5(ζ )

)′

. (77)
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Since
d
dz

℘−1
(

−
C4(ζ )
C5(ζ )

, g2, g3

)
=

1

℘ ′

(
℘−1

(
−

C4(ζ )
C5(ζ )

, g2, g3
)) =

1
℘ ′(ρ)

, (78)

we use (70) to obtain

dI(ζ )
dζ

=
3(c − 1)ω1 − 48(c + 1)ζ 4ω1 − 8ζ 2

(
6(c2 − 1)ζw(ω1) + (1 − E)ω1

)
96ζ 3Ω(ζ )

. (79)

Taking the real part of (79) does not give another characterization of the spectrum. Instead, we think of (72) as restricting to the zero level
set of the left-hand side. Then we use (79) to determine a tangent vector field which allows us to map out level curves originating from
any point. This is explained in more detail in Section 7.

7. The σL spectrum on the imaginary axis

In this section we discuss σL ∩ iR. As we demonstrate, this corresponds to the part of σL lying on the real axis for both rotational and
librational waves, as well as a part of σL lying on the imaginary axis for rotational waves. Using (73) we obtain analytic expressions for σL
corresponding to σL ∩ iR.

We begin by considering ζ ∈ R. As we demonstrate below, (73) is satisfied for any real ζ . Using (50) and (57), we determine the
corresponding parts of σL.

Theorem 7.1. The condition (73) is satisfied for ζ ∈ R.

Proof. Since k, c , K(k), and E(k) are real, it suffices to show that Ω(ζ ) ∈ iR, ρ ∈ iR, and ζw(ρ) ∈ iR. Rewriting (50) in the superluminal
case,

Ω2(ζ ) = −
1
64

((
−4(1 + c)ζ +

c − 1
ζ

)2

+ 8E(c2 − 1)

)
, (80)

and in the subluminal case,

Ω2(ζ ) = −
1
64

((
−4(1 + c)ζ −

c − 1
ζ

)2

+ 8(2 − E)(1 − c2)

)
. (81)

In either case Ω2
≤ 0 and Ω(ζ ) ∈ iR. Since ζw with g2, g3 ∈ R takes real values to real values and purely imaginary values to purely

imaginary values [26], to prove ζw(ρ) ∈ iR it suffices to show that ρ = ℘−1
(
−

C4(ζ )
C5(ζ )

, g2, g3
)

∈ iR. For g2, g3 ∈ R, ℘(R, g2, g3) maps to
[e1, ∞), and since ℘(ix, g2, g3) = −℘(x, g2, −g3) we have that ℘(iR, g2, g3) maps to (−∞, e3]. Thus we need to show that for ζ ∈ R,
−

C4(ζ )
C5(ζ )

≤ e3. Again we split into cases. In the superluminal case, we want to show

(c − 1)(E − 1) + 12(c + 1)ζ 2
− 24iζΩ(ζ )

6(c − 1)(1 − c2)
≤

E + 2
6(1 − c2)

. (82)

Substituting in for Ω(ζ ) using (80) and simplifying the left- and right-hand sides of this expression yields

4(c + 1)ζ 2

c − 1
+

√(
−4(1 + c)ζ 2 + (c − 1)

)2
+ 8E(c2 − 1)ζ 2

c − 1
≥ 1. (83)

Since
√(

−4(1 + c)ζ 2 + (c − 1)
)2

+ 8E(c2 − 1)ζ 2 ≥

√(
−4(1 + c)ζ 2 + (c − 1)

)2, (83) is satisfied. For the subluminal case we proceed in
a similar manner, noting the different value of e3 from (29)–(32). We want to show

(c − 1)(E − 1) + 12(c + 1)ζ 2
− 24iζΩ(ζ )

6(c − 1)(1 − c2)
≤

E − 4
6(1 − c2)

. (84)

Substituting in for Ω(ζ ) using (81) and simplifying the left- and right-hand sides of this expression yields

4(c + 1)ζ 2
+

√(
−4(c + 1)ζ 2 + (1 − c)

)2
+ 8(2 − E)(1 − c2)ζ 2

1 − c
≥ 1. (85)

Since
√(

−4(c + 1)ζ 2 + (1 − c)
)2

+ 8(2 − E)(1 − c2)ζ 2 ≥

√(
−4(c + 1)ζ 2 + (1 − c)

)2, (85) is satisfied. □

At this point, we know that R ⊂ σL. We wish to see what this corresponds to for σL. For convenience define

SΩ =

{
Ω : Ω2

=
1
64

(
−8(c2 − 1)(E − 1) −

(c − 1)2

ζ 2 − 16(c + 1)2ζ 2
)

and ζ ∈ σL

}
. (86)

As was seen in the proof of Theorem 7.1, when ζ ∈ R, Ω(ζ ) ∈ iR. Applying (57), we see that ζ ∈ R corresponds to σL ∪ iR. Representative
plots of Ω2 are shown in Fig. 3. The subset of SΩ corresponding to ζ ∈ R consists of (−i∞, −i|Ωm|] ∪ [i|Ωm|, i∞), where Ω2

m is the
maximum value of Ω2. The set SΩ corresponding to ζ ∈ R is quadruple covered as for all values of Ω there are four values of ζ which
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(a) Subluminal: c2 < 1. (b) Superluminal: c2 > 1.

Fig. 3. Ω2 as a function of real ζ for subluminal and superluminal waves: (a) subluminal: c = 0.4 and E = 1, and (b) superluminal: c = 1.4 and E = 1.

map to it, except at Ω = ±Ωm, where just two values of ζ map to it. Ωm can be found explicitly by finding the extrema of Ω2(ζ ). In the
subluminal case, Ω2(ζ ) reaches its maxima at

ζm = ±

√
1 − c

4(1 + c)
, Ω2

m = −
1
8
(1 − c2)(2 − E), (87)

and in the superluminal case, Ω2(ζ ) reaches its maxima at

ζm = ±

√
c − 1

4(1 + c)
, Ω2

m = −
1
8
(c2 − 1)E. (88)

Applying (57) we have (−i∞, −λ1] ∪ [λ1, i∞) ⊂ σL where

λ1 = i

√
(1 − c2)(2 − E)

2
, (89)

in the subluminal case, and

λ1 = i

√
E(c2 − 1)

2
, (90)

in the superluminal case.
If ζ satisfies Ω2(ζ ) = 0, then ζ must satisfy (73). This is due to the fact that the origin is always included in σL and hence in SΩ . The

fact that there are four roots of Ω2(ζ ) = 0 corresponds to the fact that 0 ∈ σL with multiplicity four. This is seen from the symmetries
of (1) and by applying Noether’s Theorem [32,33]. For rotational waves, the roots of Ω2(ζ ) lie on the imaginary axis. For the subluminal
rotational case the roots are:

ζc =

{ √
1 − c2

2
√
2(c + 1)

(√
−E ±

√
2 − E

)
i, −

√
1 − c2

2
√
2(c + 1)

(√
−E ±

√
2 − E

)
i

}
, (91)

and in the superluminal rotational case the roots are:

ζc =

{ √
c2 − 1

2
√
2(c + 1)

(√
E ±

√
E − 2

)
i, −

√
c2 − 1

2
√
2(c + 1)

(√
E ±

√
E − 2

)
i

}
. (92)

We label the four roots ζ1, ζ2, ζ3, and ζ4 where Im(ζ1) < Im(ζ2) < Im(ζ3) < Im(ζ4). They are labeled for reference in Fig. 4.

Theorem7.2. For rotational waves, the condition (73) is satisfied for all ζ ∈ iR such that Im(ζ1) ≤ Im(ζ ) ≤ Im(ζ2) or Im(ζ3) ≤ Im(ζ ) ≤ Im(ζ4).

Proof. The level curve (76), is exactly the condition (73). We examine the tangent vector field to (76). If we let ζ = ζr + iζi, then

I(ζ ) = I(ζr + iζi) =
2ω1 (i(ζr + iζi) + Ω(ζr + iζi))

c − 1
+ 2ν (ζw(ρ)ω1 − ζw(ω1)ρ) . (93)

Taking derivativeswith respect to ζr and ζi gives a normal vector field to level curves of the general condition Re [I(ζ )] = C for any constant
C , specifically, the normal vector is given by(

dRe [I(ζr + iζi)]
dζr

,
dRe [I(ζr + iζi)]

dζi

)
.

Thus, the tangent vector field is(
−

dRe [I(ζr + iζi)]
dζi

,
dRe [I(ζr + iζi)]

dζr

)
.
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(a) Subluminal: c2 < 1. (b) Superluminal: c2 > 1.

Fig. 4. Ω2 as a function of iζ , ζ ∈ R for subluminal and superluminal rotational waves: (a) subluminal rotational: c = 0.4 and E = −1, and (b) superluminal rotational:
c = 1.4 and E = 3.

By applying the chain rule and using Re[iz] = −Im[z], we have that the tangent vector field to the level curves is(
Im
[
dI
dζ

]
, Re

[
dI
dζ

])
, (94)

where dI
dζ is given in (79). We note that the numerator of (79) is strictly real for ζ ∈ iR, thus

Im
[
dI
dζ

]
=
(
3(c − 1)ω1 − 48(c + 1)ζ 4ω1 − 8ζ 2 (3(c2 − 1)ζw(ω1) + (1 − E)ω1

))
Im
[

1
96ζ 3Ω(ζ )

]
. (95)

Since Ω2(ζ ) ≤ 0 for ζ ∈ [ζ1, ζ2] ⊂ iR and for ζ ∈ [ζ3, ζ4] ⊂ iRwe have that

Im
[
dI
dζ

]
= 0, (96)

and thus Re [I(ζ )] = C on these intervals. Here, and henceforth, we use [a, b] to denote the straight line interval between the complex
numbers a and b. Since Re [I(ζ )] = 0 at the endpoints ζc , C = 0 and (73) is satisfied. □

At this point we know that [ζ1, ζ2] ∪ [ζ3, ζ4] ⊂ σL. We wish to see what this corresponds to for σL. Representative plots of Ω2(iζ ),
ζ ∈ R are shown in Fig. 4. The subset of SΩ corresponding to ζ ∈ [ζ1, ζ2]∪ [ζ3, ζ4] consists of [−i|Ωn|, 0], where Ω2

n is the minimum value
of Ω2. The set SΩ corresponding to ζ ∈ [ζ1, ζ2] ∪ [ζ3, ζ4] is quadruple covered, except at the points ±Ωn, where the set is double-covered.
Ωn can be found explicitly by finding the extrema of Ω2(iζ ). In the subluminal rotational case, Ω2(ζ ) reaches its minima at

ζn = ±

√
1 − c

4(c + 1)
i, Ω2

n (ζ ) =
1
8
(1 − c2)E, (97)

and in the superluminal rotational case, Ω2(ζ ) reaches its minima at

ζn = ±

√
c − 1

4(c + 1)
i, Ω2

n (ζ ) =
1
8
(c2 − 1)(E − 2). (98)

Applying (57) we have [−λ2, λ2] ⊂ σL where

λ2 =

√
(1 − c2)E

2
i, (99)

in the subluminal rotational case, and

λ2 =

√
(c2 − 1)(E − 2)

2
i, (100)

in the superluminal rotational case.

8. Qualitatively different parts of the spectrum

Up to this pointwe have discussed only the subset of σL that is on the imaginary axis. In this sectionwe discuss the rest of the spectrum.
Except in the subluminal, rotational case, a part of σL is in the right-half plane (corresponding to unstable modes). For each of the other
three regions we split parameter space into two subregions where σL \ iR is qualitatively different. Here σL \ iR is the closure of σL not
on the imaginary axis.

We refer to Fig. 5, which shows (E, c) parameter space with curves that split it into subregions where σL \ iR is qualitatively different.
The exact curves splitting up the regions, and their derivations, are given below. In Fig. 6 we show representative plots of σL for all
qualitatively different spectra, and in Fig. 7 we show the corresponding σL spectrum.
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Fig. 5. Parameter space with regions corresponding to different qualitative behavior in the linear stability spectrum separated by black curves. Subregions extend to infinity
in directions of arrows. Colors correspond to solutions in Fig. 1. Blue: subluminal rotational (0 ≤ |c| < 1, E < 0), orange: subluminal librational (0 ≤ |c| < 1, 0 < E ≤ 2),
green: superluminal librational (|c| > 1, 0 ≤ E < 2), red: superluminal rotational (0 ≤ |c| > 1, E > 2). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. The stability spectrum for superluminal (a–d), subluminal (e–g), librational (a, b, f, g) and rotational (c, d, e) waves. (a) c = 1.5, E = 1.5; (b) c = 1.02, E = 1.8; (c)
c = 1.1, E = 2.2; (d) c = 1.4, E = 2.4; (e) c = 0.6, E = −0.75; (f) c = 0.6, E = 1.0; (g) c = 0.8, E = 1.5; Colors correspond to Fig. 2, thickness of lines corresponds to
double or quadruple covering of spectrum. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

• The spectral stability of subluminal rotational solutions is well known [16,17] and σL ⊂ iR. A representative plot of σL is seen in
Fig. 6(e).

• For the subluminal librational solutions, σL \ iR consists of either a double-covered infinity symbol, see Fig. 6(f), or a double-covered
figure 8 inset inside a double-covered ellipse-like curve, see Fig. 6(g). The boundary between these regions is given explicitly below
and a representative plot of σL on this boundary is seen in Fig. 8(1c).

• For the superluminal librational solutions, σL \ iR consists of either a double-covered figure 8, see Fig. 6(a), or a double-covered
infinity symbol inset inside a double-covered ellipse-like curve, see Fig. 6(b). The boundary between these regions is given below
and a representative plot of σL on this boundary is seen in Fig. 8(1a).

• For the superluminal rotational solutions, σL \ iR consists of either a double-covered ellipse-like curve surrounding the origin, see
Fig. 6(c), or a double-covered ellipse-like curve in the upper- and lower-half plane, see Fig. 6(d). The boundary between these regions
is given explicitly below and a representative plot of σL on this boundary is seen in Fig. 8(1b).

For all these cases, much can be proven and quantified explicitly, i.e., not in terms of special functions. Specifically, we calculate explicit
expressions for σL ∩ iR and in the librational case we find explicit expressions for the tangents to σL around the origin. In fact, we are
able to approximate the spectrum at the origin and around all points σL ∩ iR using a Taylor series to arbitrary order. These series give
good approximations to the greatest real part of σL using only a few terms. They are not given in this paper, but follow from the same
procedure as outlined in [21].
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Fig. 7. The Lax spectrum (black curves) for superluminal (a–d), subluminal (e–g), librational (a, b, f, g) and rotational (c, d, e) waves. (a) c = 1.5, E = 1.5; (b)
c = 1.02, E = 1.8; (c) c = 1.1, E = 2.2; (d) c = 1.4, E = 2.4; (e) c = 0.6, E = −0.75; (f) c = 0.6, E = 1.0; (g) c = 0.8, E = 1.5. Red crosses signify values of
ζ for which Ω2(ζ ) = 0. Blue crosses signify values of ζ ∈ R for which σL has a vertical tangent. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 8. (1) The stability spectrum for the cases separating subregions and (2) the corresponding Lax spectrum (black curves). Red crosses signify values of ζ for which
Ω2(ζ ) = 0. Blue crosses signify values of ζ ∈ R for which σL has a vertical tangent. (a) Superluminal librational: c = 1.03702, E = 1.8, (b) superluminal rotational:
c = 1.3, E = 2.27060 (c) subluminal librational: c = 0.67148, E = 1.5. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

A method for determining σL is to take known points satisfying (73) and to follow the tangent vector field (94) from those points. We
apply this technique from ζ ∈ Rwhich we know to satisfy (73) from Theorem 7.1 as well as from the points ζ satisfying Ω2(ζ ) = 0.

8.1. Subluminal librational solutions

The roots of Ω2(ζ ) = 0 are given by

ζc =

{√
1 − c2

√
E

2
√
2(c + 1)

±

√
1 − c2

√
2 − e

2
√
2(c + 1)

i, −

√
1 − c2

√
E

2
√
2(c + 1)

±

√
1 − c2

√
2 − e

2
√
2(c + 1)

i

}
, (101)
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seen as red crosses in Fig. 7(f), (g). For convenience,we label these four roots ζ1, ζ2, ζ3, ζ4,where the subscript corresponds to the quadrant
on the real and imaginary planes the root is in. In this case, (79) is

dI(ζ )
dζ

=

√
1 − c2

16ζ 2E(k) +
(
c − 1 − 8ζ 2

− 16(c + 1)ζ 4
)
K(k)

32ζ 3Ω(z)
. (102)

Examining (94) for ζ ∈ R, for a vertical tangent in σL to occur, we need the numerator of (102) to be zero. Using the discriminant of
16ζ 2E(k) +

(
c − 1 − 8ζ 2

− 16(c + 1)ζ 4
)
K(k) as a function of ζ , we find the condition

c =
2
√

−E2(k) + E(k)K(k)
K(k)

, (103)

for a vertical tangent to occur on the real axis. This condition is plotted as the black curve in the subluminal librational region of Fig. 5, and
defines the split between qualitatively different spectra. Representative spectral plots for E and c on this boundary are seen in Fig. 8(c).
For solutions satisfying (103) we have the following

ζt1 = ±
1
2

√
1

(1 + c)K(k)

(
2E(k) − K(k) +

√
4E2(k) − 4E(k)K(k) + c2K2(k)

)
, (104)

and

ζt2 = ±
1
2

√
1

(1 + c)K(k)

(
2E(k) − K(k) −

√
4E2(k) − 4E(k)K(k) + c2K2(k)

)
, (105)

shown as blue crosses in Fig. 7(g). Mapping these points back to σL these points correspond to the top (or bottom) of the inset figure 8 in
Fig. 6(g):

λt1 = ±

√
E − c2(E − 1)

2
+

−2E(k) + c
√
4E2(k) − 4E(k)K(k) + c2K2(k)

2K(k)
, (106)

and the ellipse-like curve in Fig. 6(g):

λt2 = ±

√
E − c2(E − 1)

2
+

−2E(k) − c
√
4E2(k) − 4E(k)K(k) + c2K2(k)

2K(k)
. (107)

Next we examine the slopes of σL at the origin. Because σL = 2SΩ it suffices to examine the slopes for the set SΩ . We letΩ = Ωr + iΩi,

and we consider ζi as a function of ζr so that Ω (ζr , ζi(ζr )). Applying the chain rule we have that the slope at any point in the set SΩ is

dΩi

dΩr
=

dΩi/dζr
dΩr/dζr

=

dΩi
dζr

+
dΩi
dζi

dζi
dζr

dΩr
dζr

+
dΩr
dζi

dζi
dζr

, (108)

where
dζi
dζr

= −
dRe(I)/dζr
dRe(I)/dζi

. (109)

We examine (108) near where Ω = 0 and ζ = ζc . The slopes at the origin are

dΩi

dΩr
= ±

c
√
E(2 − E)K(k)

−2E(k) + EK(k)
. (110)

Further application of the chain rule can yield expressions for derivatives around the origin of any order, and the same technique can be
applied around (106) and (107). In doing this we can obtain Taylor series approximations of σL to any order.

8.2. Superluminal librational solutions

The roots of Ω2(ζ ) = 0 are given by

ζc =

{√
c2 − 1

√
2 − E

2
√
2(c + 1)

±

√
c2 − 1

√
E

2
√
2(c + 1)

i, −

√
c2 − 1

√
2 − E

2
√
2(c + 1)

±

√
c2 − 1

√
E

2
√
2(c + 1)

i

}
, (111)

seen as red crosses in Fig. 7(f), (g). As in Section 8.1, we label these four roots ζ1, ζ2, ζ3, ζ4, where the subscript corresponds to the
quadrant on the real and imaginary planes the root is in. In this case, (79) is

dI(ζ )
dζ

=

√
c2 − 1

−16ζ 2E(k) +
(
c − 1 + 8ζ 2

− 16(c + 1)ζ 4
)
K(k)

32ζ 3Ω(z)
. (112)

Examining (94) for ζ ∈ R, for a vertical tangent in σL to occur, we need the numerator of (112) to be zero. In this case, there are always
two real values of ζ for which vertical tangents in σL occur:

ζt = ±
1
2

√
1

(1 + c)K(k)

(
−2E(k) − K(k) +

√
4E2(k) − 4E(k)K(k) + c2K2(k)

)
, (113)
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shown as blue crosses in Fig. 7(a), (b). Mapping these points back to σL these points correspond to the top (or bottom) of the figure 8 in
Fig. 6(a) or the top (or bottom) of the ellipse-like curve in Fig. 6(b):

λt = ±

√
E − 2 − c2(e − 1)

2
+

2E(k) − c
√
4E2(k) − 4E(k)K(k) + c2K2(k)

2K(k)
. (114)

In the subluminal librational case in Section 8.1, the qualitative change in the spectrum occurred when there was a bifurcation in the real
values of ζ with vertical tangents. In this case, there is no such bifurcation. The qualitative change in the spectrum occurs when there is a
bifurcation in imaginary values of ζ . The imaginary roots of the numerator of (112) are

ζp = ±
1
2
i

√
1

(1 + c)K(k)

(
2E(k) + K(k) +

√
4E2(k) − 4E(k)K(k) + c2K2(k)

)
. (115)

The qualitative change occurs for E and c such that ζp satisfies (73). This defines the curve seen in the superluminal librational region of
Fig. 5. Representative spectral plots for E and c on this boundary are seen in Fig. 8(a). The slopes of σL at the origin are computed using
the method described in Section 8.1. They are

dΩi

dΩr
= ±

c
√
E(2 − E)K(k)

2E(k) + (E − 2)K(k)
. (116)

Aswith the subluminal librational solutions, expressions for derivatives of any order around the origin and around (114) can be computed.

8.3. Superluminal rotational solutions

The roots of Ω2(ζ ) = 0 are given in (92), seen as red crosses in Fig. 7(c), (d). In this case, (79) is

dI(ζ )
dζ

=

√
c2 − 1

−8Eζ 2E(k) +
(
c − 1 + 8(E − 1)ζ 2

− 16(c + 1)ζ 4
)
K(k)

16
√
2ζ 3Ω(z)

. (117)

Examining (94) for ζ ∈ R, for a vertical tangent in σL to occur, we need the numerator of (117) to be zero. In this case, again, there are
always two real values of ζ for which vertical tangents in σL occur:

ζt = ±
1
2

√
1

(1 + c)K(k)

(
−EE(k) + (E − 1)K(k) +

√
E2E2(k) − 2(E − 1)EE(k)K(k) + (c2 + (E − 2)E)K2(k)

)
, (118)

shown as blue crosses in Fig. 7(a), (b). Mapping these points back to σL these points correspond to the top (or bottom) of the ellipse-like
curve in Fig. 6(c) and the top of the ellipse-like curve in the upper-half plane and the bottom of the ellipse-like curve in the lower-half
plane in Fig. 6(d):

λt = ±

√
EE(k) − c2(E − 1)K(k) − c

√
E2E2(k) − 2(E − 1)EE(k)K(k) + (c2 + (E − 2)E)K2(k)

2K(k)
. (119)

As in the superluminal librational case above, we do not have a bifurcation in the real values of ζ with vertical tangents. The qualitative
change in the spectrum occurs when there is a bifurcation in imaginary values of ζ . The imaginary roots of the numerator of (117) are

ζp = ±
1
2
i

√
1

(1 + c)K(k)

(
EE(k) + (1 − E)K(k) +

√
E2E2(k) − 2(E − 1)EE(k)K(k) + (c2 + (E − 2)E)K2(k)

)
. (120)

The qualitative change occurs for E and c such that |ζp| = ζ4 and−|ζp| = ζ1 where ζ1 and ζ4 are the smallest and largest roots ofΩ2(ζ ) = 0
respectively. This condition is seen in Fig. 8(2b) and is

c =
E(k)
K(k)

√
E

E − 2
. (121)

For c >

√
E

E−2
E(k)
K(k) , we map ζp to σL and find these points corresponding to the bottom of the ellipse-like curve in the upper-half plane

and the top of the ellipse-like curve in the lower-half plane in Fig. 6(d):

λ = ±

√
EE(k) − c2(E − 1)K(k) + c

√
E2E2(k) − 2(E − 1)EE(k)K(k) + (c2 + (E − 2)E)K2(k)

2K(k)
. (122)

9. Floquet theory and subharmonic perturbations

We examine σL using a Floquet parameter description. We use this to prove spectral stability results with respect to perturbations of
an integer multiple of the fundamental period of the solution, i.e., subharmonic perturbations.

We write the eigenfunctions from (37) using a Floquet–Bloch decomposition(
W1(z)
W2(z)

)
= eiµz

(
Ŵ1(z)
Ŵ2(z)

)
, Ŵ1(z + T (k)) = Ŵ1(z), Ŵ2(z + T (k)) = Ŵ2(z), (123)



B. Deconinck et al. / Physica D 360 (2017) 17–35 31

with µ ∈ [−π/T (k), π/T (k)) [21,34]. Here T (k) = 2K(k) for all solutions. From Floquet’s Theorem [34], all bounded solutions of (37)
are of this form, and our analysis includes perturbations of an arbitrary period. Specifically, µ = 2mπ/T (k) for m ∈ Z corresponds to
perturbations of the same period T (k) of the solutions, and in general

µ =
2mπ

PT (k)
, m, P ∈ Z, (124)

corresponds to perturbations of period PT (K ). The choice of the specific range of µ is arbitrary as long as it is of length 2π/T (k). For added
clarity in this section, we plot figures using the larger ranges [−2π/T (k), 2π/T (k)), periodically extending µ beyond the basic region.

In the previous sections σL is parameterized in terms of ζ . Wewish to re-parameterize σL in terms ofµ. We examine the eigenfunction
W1 from (123). From the periodicity of Ŵ1 we have

eiµT (k)
=

W1(z + T (k))
W1(z)

. (125)

Using (58), (51), and (52), we find

eiµT (k)
= exp

(
−2

∫ T (k)

0

−BC + D(A − Ω) + Bz

B
dz
)

, (126)

where we have used the periodicity properties

A (z + T (k)) = A(z), B (z + T (k)) = B(z). (127)

Using (73),

µ(ζ ) = −
2iI(ζ )
T (k)

+
2πn
T (k)

, (128)

where I(ζ ) is given in (75) and n ∈ Z.
In what follows we discuss the stability of solutions with respect to perturbations of integer multiples of their fundamental periods,

so-called subharmonic perturbations [35]. The expression (128) gives an easy way to do this. Specifically, from (124) we know which
values of µ correspond to perturbations of what type. For stability with respect to perturbations of period 2πm/µ = PT (k), we need all
spectral elements associated with a given µ value to have zero real part. In Fig. 9 we plot the real part of σL as a function of µT (k) using
(50), (57), and (128). We rescale µ by T (k) for consistency in our figures. Here

µT (k) =
2πm
P

, (129)

corresponds to perturbations of PT (k) for any integerm.
The following results are obtained in each region of parameter space:

• For the subluminal rotational case, all solutions are spectrally stable [16,17].
• For the subluminal librational case, all solutions are spectrally unstablewith respect to all subharmonic perturbations. This is shown

in Section 9.1.
• For the superluminal librational case, all solutions are spectrally unstable, but all solutions left of curve 2 in Fig. 10 are stable with

respect to perturbations of twice the period and the same period, all solutions left of curve 4 are stable with respect to perturbations
of four times the period, all solutions left of curve 6 are stable with respect to perturbations of six times the period, as well as three
times the period, etc. This is shown in Section 9.2.

• For the superluminal rotational case, all solutions are spectrally unstable, but there are regions of stability with respect to
subharmonic perturbations, see Fig. 12 and Section 9.3 for details.

We provide the following useful lemma:

Lemma 9.1. For any analytic function f (z) = u(x, y) + iv(x, y), on a contour where u(x, y) = constant, v(x, y) is strictly monotone, provided
the contour does not traverse a saddle point. Similarly, on a contour where v(x, y) = constant, u(x, y) is strictly monotone, provided the contour
does not traverse a saddle point.

Proof. This is an immediate consequence of the Cauchy–Riemann relations [36]. □

Thus along contours where Re(I(ζ )) = 0, if there are no saddle points, then Im(I(ζ )) is monotone. If we fix c and E, using (128) we see
that µ(ζ )T (k) = 2πn + 2Im(I(ζ )) − 2iRe(I(ζ )) is also monotone along curves with Re (I(ζ )) = 0. In what follows, we omit σL ∩ iR.

9.1. Subluminal librational solutions

There are two cases to consider for subluminal librational solutions, corresponding to the two qualitatively different stability spectra
seen in Fig. 6(f), (g), and their corresponding Lax spectra in Fig. 7(f), (g). Representative plots of µT (k) vs. Re(λ) for these cases are shown
in Fig. 9(a), (b). We prove the following theorem:

Theorem 9.2. The subluminal librational solutions to (1) are spectrally unstable with respect to all subharmonic perturbations.

Proof. It suffices to show that for some ζ ∈ σL, µ = 0 and Re(λ) > 0. We split into cases with qualitatively different spectra:
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Fig. 9. The real part of the spectrum Re(λ) (vertical axis) as a function of µT (k) (horizontal axis): for subluminal librational (a–b), superluminal librational (c–e), and
superluminal rotational (f–h) solutions. (a) c = 0.6, E = 1.0; (b) c = 0.8, E = 1.5; (c) c = 1.5, E = 0.7; (d) c = 1.5, E = 1.5; (e) c = 1.02, E = 1.8; (f) c = 1.3, E = 2.9;
(g) c = 1.4, E = 2.4; (h) c = 2.1, E = 6.8.

Fig. 10. A plot of parameter space showing the spectral stability of superluminal librational solutions with respect to various subharmonic perturbations. Subregions extend
to infinity in directions of arrows. Within the superluminal librational region, all solutions left of curve 2 are stable with respect to perturbations of twice the period as well
as perturbations of the same period, all solutions left of curve 4 are stable with respect to perturbations of four times the period, all solutions left of curve 6 are stable with
respect to perturbations of six times the period as well as perturbations of three times the period, etc.

1. In the case where the stability spectrum looks qualitatively like an infinity symbol, we examine ζ ∈ σL, see Fig. 7(f). The infinity
symbol spectrum is double covered, so without loss of generality, we consider only values of ζ in the upper-half plane. Specifically,
we consider values of ζ ranging from ζ2 to ζ1, moving from the red cross in the second quadrant to the red cross in the first quadrant
of Fig. 7(f). At ζ2, µT (k) = −π and Re(λ) = 0. As ζ moves from ζ2 to ζ1, µT (k) monotonically increases (Lemma 9.1) until it reaches
µT (k) = π at ζ = ζ1, where Re(λ) = 0, see Fig. 9(a). Along this curve Re(λ) ̸= 0 so by the intermediate value theorem at some point
between ζ2 and ζ2, µT (k) = 0 with Re(λ) > 0.

2. In the case where the stability spectrum looks qualitatively like a figure 8 inset in an ellipse-like curve, examine ζ ∈ σL, see Fig. 7(g).
The ζ spectrum has two components, ζ corresponding to the figure 8, and ζ corresponding to the ellipse-like curve. For instability,
we only need to examine ζ corresponding to the ellipse-like curve. Again, we consider only values of ζ in the upper-half plane.
Specifically, we consider values of ζ ranging from−|ζt2| to |ζt2|, moving from the blue cross in the second quadrant to the blue cross
in the first quadrant of Fig. 7(g). At−|ζt2|,µT (k) = −2iI(−|ζt2|), and Re(λ) = 0. As ζ moves from−|ζt2| to |ζt2|,µT (k) monotonically
increases (Lemma 9.1) until it reachesµT (k) = −2iI(|ζt2|) at ζ = |ζt2|, with Re(λ) = 0, see the ellipse-like curve in Fig. 9(b). Because
of the symmetries of I(ζ ) for ζ ∈ R we have that µT (k) = −2iI(|ζt2|) = 2iI(−|ζt2|). Along this curve Re(λ) ̸= 0 so again by the
intermediate value theorem at some point between −|ζt2| and |ζt2|, µT (k) = 0 with Re(λ) > 0. □

9.2. Superluminal librational solutions

Theorem 9.3. The superluminal librational solutions to (1) are spectrally stable with respect to subharmonic perturbations of period PT (k) if
they satisfy the condition

− 2iI(−|ζt |) ≥
(P − 1)π

P
, (130)
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(a) Superluminal librational. (b) Superluminal rotational.

Fig. 11. The real part of the spectrum Re(λ) (vertical axes) as a function of µT (k) (horizontal axes): µT (k) = 2mπ/P for integers m and P corresponds to perturbations of
period P times the period of the underlying solution. (a) The superluminal solution is stable with respect to perturbations of three times its period is necessarily stable with
respect to perturbations of six times its period. (b) If a superluminal rotational solution is stable with respect to perturbations of five times its period, it is stable with respect
to perturbations of three times its period or perturbations of two times its period. (i) If the ellipse-like curves are in (4π/5, 6π/5) they are necessarily in (2π/3, 4π/3) (red),
(ii) if the ellipse-like curves are in (2π/5, 4π/5) and (6π/5, 8π/5) they are necessarily in (0, π ) and (π, 2π ) respectively (blue), (iii) if the ellipse-like curves are in (0, 2π/5)
and (8π/5, 2π ) they are necessarily in both (0, π ) and (π, 2π ) respectively as well as (0, 2π/3) and (2π/3, 4π/3) respectively (black). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

for P odd, and

− 2iI(−|ζt |) ≥
(P − 2)π

P
, (131)

for P even.

Proof. For stability with respect to perturbations of period PT (k) we need that for µT (k) = 2πm/P , the spectral elements λ ∈ σL have
zero real part, i.e., for µT (k) = 0, 2π

P , . . . ,
2π (P−1)

P , Re(λ) = 0.
We examine ζ ∈ σL, in the figure 8 case, see Fig. 7(a). The figure 8 spectrum is double covered, so, without loss of generality, we

consider only values of ζ in the left-half plane. Specifically we consider values of ζ ranging from ζ3 to ζ2 passing along the level curve
through ζ = −|ζt |. At ζ3, µT (k) = π and Re(λ) = 0. As ζ moves from ζ3 to −|ζt |, µT (k) monotonically decreases (Lemma 9.1) until
it reaches µtT (k) = −2iI(−|ζt |) at ζ = −|ζt |. At −|ζt |, Re(λ) = 0. Note that we are only considering the lower-left quarter plane. The
analysis for ζ ranging from ζ1 to |ζt | is symmetric in µT (k).

Qualitatively, we have figure 8s centered atµT (k) = π +2πn and extending over [µtT (k)+2πn, π + (π −µtT (k))+2πn], see Fig. 9(c),
(d). Relevant to the interval [0, 2π ) is the figure 8 centered at π . For stability, we need the left-most edge of the figure 8 to be to the right
of (P−1)π

P for P odd and to the right of (P−2)π
P for P even. Similarly, we need the right-most edge of the figure 8 to be to the left of (P+1)π

P for
P odd and to the left of (P+2)π

P for P even. These conditions are for P odd:

µtT (k) ≥
(P − 1)π

P
and π + (π − µtT (k)) ≤

(P + 1)π
P

, (132)

and for P even:

µtT (k) ≥
(P − 2)π

P
and π + (π − µtT (k)) ≤

(P + 2)π
P

. (133)

These conditions simplify to give (130) and (131) respectively. □

We remark that for a given odd P the condition (130) is the same as the condition (131) for 2P . Thus, for superluminal librational
waves if we have stability with respect to perturbations of some odd multiple P of the period T (k) we also have stability with respect to
perturbations of 2PT (k). This is shown in the case when P = 3 in Fig. 11(a). These results are summarized in Fig. 10 where we plot only the
condition (131). We remark that it is possible for solutions to be stable with respect to perturbations of four times the period but not with
respect to three times the period. Solutions of this type would lie to the left of curve 4 but to the right of curve 6 in Fig. 10. More generally
it is possible to have solutions which are stable with respect to p times the period but not with respect to q times the period where p is
even and less than q < p < 2q.

9.3. Superluminal rotational solutions

Theorem 9.4. The superluminal rotational solutions to (1) are spectrally stable with respect to subharmonic perturbations of period PT (k) if
they simultaneously satisfy the conditions

2πn − 2iI(−|ζt |) ≤
2π (m + 1)

P
, (134)

2πn − 2iI(|ζp|i) ≥
2πm
P

, (135)

for some n ∈ Z and some m ∈ {0, 1, . . . , P − 1}. Note that Re (I(−|ζt |)) = 0 and Re
(
I(|ζp|i)

)
= 0.
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Fig. 12. A plot of the superluminal rotational region of parameter space showing the spectral stability with respect to various subharmonic perturbations. Parameter space
is rescaled using the elliptic modulus k =

√
2/E, to show the extent of the curves as E → ∞. Solutions within the blue (light blue, green, yellow, red) regions are stable with

respect to perturbations of one (two, three, four, five) times the period respectively. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Proof. For stability with respect to perturbations of period PT (k) we need that for µT (k) = 2πm/P , the spectral elements λ ∈ σL have
zero real part for allm ∈ {0, 1, . . . , P − 1}.

We examine ζ ∈ σL, in the case where we have ellipse-like curves in the upper- and lower-half planes, see Fig. 7(d). As in Theorem 9.3,
using symmetries we restrict ourselves to ζ in the upper-left quarter plane. Specifically we consider values of ζ ranging from−|ζt | to |ζp|i.
At −|ζt |, µT (k) = −2iI(−|ζt |) and Re(λ) = 0. As ζ moves from −|ζt | to |ζp|i, µT (k) monotonically decreases (Lemma 9.1) until it reaches
µtT (k) = −2iI(|ζp|i) at ζ = |ζp|i. At |ζp|i, Re(λ) = 0.

Qualitatively, we have an ellipse-like curve beginning at −2iI(−|ζt |) + 2πn and extending to −2iI(|ζp|i) + 2πn, see Fig. 9(g), (h). The
only values of µT (k) with Re(λ) > 0 lie within the range (2iI(|ζp|i) + 2πn, 2iI(−|ζt |) + 2πn). So if (2iI(|ζp|i) + 2πn, 2iI(−|ζt |) + 2πn) ⊂

( 2πm
P ,

2π (m+1)
P ), for some m ∈ {0, 1, . . . , P − 1}, then Re(λ) = 0 for µT (k) = 2πm/P for allm ∈ {0, 1, . . . , P − 1}.

Thus for stability we need the right-most edge of each of these ellipse-like curves to be to the left of 2π (m + 1)/P , and the left-most
edge of each of these ellipse-like curves to be to the right of 2πm/P for some m ∈ {0, 1, . . . , P − 1}. This gives us conditions (134) and
(135). □

These results are summarized in Fig. 12.We choose to rescale parameter space using the ellipticmodulus k =
√
2/E, to show the extent

of the subharmonic stability regions as E → ∞. We only show regions for P = 1, 2, 3, 4, 5 for the sake of clarity.
We see that there are many disjoint regions of subharmonic stability for each value of P corresponding to the various choices for

m. Within each disjoint region of stability for same period perturbations (blue) there are P disjoint regions of stability with respect to
perturbations of P times the period. This follows directly from the conditions (134) and (135). We note the possibility of solutions which
are stable with respect to three times the period of the solution but not with respect to two times the period of the solution. An example
of what µT (k) looks like in this case is shown in Fig. 9(h) with c = 2.1, E = 6.8, k = 0.542326. Indeed it is possible to have solutions
which are stable with respect to p times the period of the solution but not with respect to q times the period of the solution for any p > q
where q ∤ p. From Fig. 12 we notice that if a solution is stable with respect to perturbations of five times the period (red) it is stable with
respect to either perturbations of two times the period (light blue) or three times the period (green). This is proved by a simple topological
argument shown in Fig. 11(b) and explained in the caption.

10. Conclusion

In this paper, the methods of [21] are used to examine and explicitly determine the stability spectrum of the stationary solutions of
the sine-Gordon equation. As in [21], we demonstrate that the parameter space for the stationary solution separates in different regions
where the topology of the spectrum is different. An additional subdivision of this parameter space is found for superluminal waves when
considering the stability of the solutionswith respect to subharmonic perturbations of a specific period.We find solutionswhich are stable
with respect to perturbations of p times the period but unstable with respect to q times the period, where p < q.
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