
Physica D 346 (2017) 1–19
Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

The stability spectrum for elliptic solutions to the focusing NLS
equation
Bernard Deconinck, Benjamin L. Segal ∗
Department of Applied Mathematics, University of Washington, Seattle, WA 98195-3925, USA

h i g h l i g h t s

• A complete characterization of the stability spectrum for stationary elliptic-type solutions to focusing NLS.
• A classification of the stability of solutions with respect to subharmonic perturbations.
• An explicit description of the spectrum for a family of non-self adjoint problems.

a r t i c l e i n f o

Article history:
Received 28 October 2016
Received in revised form
19 January 2017
Accepted 20 January 2017
Available online 23 January 2017
Communicated by P.D. Miller

Keywords:
Stability
Elliptic solutions
Focusing NLS

a b s t r a c t

We present an analysis of the stability spectrum of all stationary elliptic-type solutions to the focusing
Nonlinear Schrödinger equation (NLS). An analytical expression for the spectrum is given. From this
expression, various quantitative and qualitative results about the spectrum are derived. Specifically, the
solution parameter space is shown to be split into four regions of distinct qualitative behavior of the
spectrum. Additional results on the stability of solutions with respect to perturbations of an integer
multiple of the period are given, as well as a procedure for approximating the greatest real part of the
spectrum.
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1. Introduction

The focusing, one-dimensional, cubic Schrödinger equation
(NLS) is given by

iΨt +
1
2
Ψxx + Ψ |Ψ |

2
= 0. (1)

In the context of water waves, nonlinear optics, and plasma
physics, Ψ (x, t) represents a complex-valued function describ-
ing the envelope of a slowly modulated carrier wave in a disper-
sive medium [1–4]. The equation also arises in the description of
Bose–Einstein condensates [5,6], whereΨ represents a mean-field
wave function.

We begin by looking at stationary solutions to (1) in the form

Ψ = e−iωtφ(x). (2)
Then φ(x) satisfies

ωφ = −
1
2
φxx − φ|φ|

2. (3)
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The stationary solutions we study in this paper are the elliptic so-
lutions to this equation and their limits. These solutions are pe-
riodic or quasi-periodic in x and limit to the well-known soliton
solution as their period goes to infinity. More details on the peri-
odic and quasi-periodic solutions relevant to our investigation are
presented in Section 2.

Rowlands [7] was the first to study the stability of elliptic solu-
tions. Using regular perturbation theory, treating the Floquet pa-
rameter as a small parameter, he conjectured that the stationary
periodic solutions to focusing NLS are unstable. Since he expanded
in a neighborhood of the origin of the spectral plane, his calcula-
tions suggest modulational instability for elliptic solutions of fo-
cusing NLS. More recently, Gallay and Hărăguş [8] examined the
stability of small-amplitude elliptic solutions, with respect to ar-
bitrary periodic and quasiperiodic perturbations. In a second pa-
per [9], using themethods of [10,11], they proved that periodic and
quasiperiodic solutions are orbitally stable with respect to distur-
bances having the same period. Also, they showed that the cnoidal
wave solutions (see below) are stable with respect to perturba-
tions of twice the period. Hărăguş and Kapitula [12] put some of
these results in the more general framework of determining the
spectrum for the linearization of an infinite-dimensional Hamil-
tonian system about a spatially periodic traveling wave. For the
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quasi-periodic solutions of sufficiently small amplitude, they es-
tablish spectral instability. Following this, Ivey and Lafortune [13]
examine the spectral stability of cnoidal wave solutions to focus-
ing NLS with respect to periodic perturbations, using the algebro-
geometric framework of hyperelliptic Riemann surfaces and Rie-
mann theta functions [14]. Their calculations make use of the
squared eigenfunction connection as do ours below. Additionally,
they use a periodic generalization of the Evans function. This gives
an analytical description of the spectrum for the cnoidal wave so-
lutions, which we replicate in this paper using elliptic functions.
Lastly, we mention a recent paper by Gustafson, Coz, and Tsai [15].
In this paper, the authors give a rigorous version of the formal
asymptotic calculation of Rowlands to establish the linear instabil-
ity of a class of real-valued periodic waves against perturbations
with period a large multiple of their fundamental period. They
achieve this by directly constructing the branch of eigenvalues us-
ing a formal expansion and the contraction mapping theorem. In
terms of elliptic function solutions, their results are limited to the
cnoidal and dnoidal solutions. Using entirely differentmethods,we
confirm their results and extend their findings to nontrivial-phase
solutions, in effect making the results of Rowlands rigorous for all
elliptic solutions of NLS.

In Sections 3–5, using the same methods as [16–18], we
exploit the integrability of (1) to associate the spectrum of
the linear stability problem with the Lax spectrum using the
squared eigenfunction connection [19]. This allows us to obtain an
analytical expression for the spectrum of the operator associated
with the linearization of (1) in the form of a condition on the
real part of an integral over one period of some integrand.
However, unlike in [16–18] the linear operator associated with
the focusing NLS equation is not self adjoint. The self adjointness
of the linear operator was directly exploited in these papers and
that is not available here. Instead, we proceed by integrating the
integrand explicitly. This is done in Section 6. Next, using the
expressions obtained, we prove results concerning the location
of the stability spectrum on the imaginary axis in Section 7. In
Section 8, we present analytical results about the spectrum, and
wemake use of the integral condition to split parameter space into
different regionswhere the spectrum shows qualitatively different
behavior. In Section 9we examine the spectral stability of solutions
against perturbations of an integer multiple of their fundamental
period confirming and extending results of [15,8,9]. Finally, in
Section 10 we discuss approximations to the spectral curves in
C found by expanding around known spectral elements. We use
those approximations to give estimates for the maximal real part
of the spectrum.

2. Elliptic solutions to focusing NLS

The results of this section are presented in more detail in [20].
We limit our analysis to just what is necessary for the following
sections. We split φ into its amplitude and phase

φ(x) = R(x)eiθ(x), (4)

where R(x) and θ(x) are real-valued, bounded functions of x ∈

R. Substituting (4) into (3), we find the standard Jacobi elliptic
function solutions given by

R2(x) = b − k2sn2(x, k), (5)

ω =
1
2
(1 + k2)−

3
2
b, (6)

θ(x) =

 x

0

c
R2(y)

dy, (7)

c2 = b(1 − b)(b − k2). (8)
Here sn(x, k) is the Jacobi elliptic sn function with elliptic modulus
k [21–24]. Besides k, the only other parameter present is b, which
is an offset parameter for the solutions. We are not specifying the
full class of parameters allowed by the four Lie point symmetries
of (1) [25]. Specifically, we are neglecting to include a scaling
and a horizontal shift in x. The use of a Galilean shift allows for
the application of our results to traveling wave solutions as well
stationary solutions. The different symmetries are not included
here as they do not produce qualitatively different results to what
is covered here, but the methods presented apply equally well.

In order for our solutions to be valid, we require that both R2(x)
and c2 are real, positive, and bounded. These conditions result in
constraints on our parameters:

0 ≤ k < 1, (9)

k2 ≤ b ≤ 1. (10)

Of special importance is the boundary of this region, as many of
the well-studied solutions to (1) lie on the boundary. Specifically,
when b = k2 or when b = 1 we have that c = 0 and
φ(x) = cn(x, k) or φ(x) = dn(x, k) respectively. Here cn(x, k)
and dn(x, k) are the Jacobi elliptic cn and dn functions respectively.
These solutions are called trivial-phase solutions, as there is no
phase in φ(x), i.e., c = 0. These solutions are periodic in x, of period
4K(k) and 2K(k) respectively. Here

K(k) =

 π/2

0

1
1 − k2 sin2 y

dy, (11)

is the complete elliptic integral of the first kind. As k → 1 these
solutions approach the well-studied stationary soliton solution of
(1): φ(x) = sech(x).

The other part of the boundary of parameter space occurs when
k = 0. Here the amplitude of φ(x) is constant and thus the analysis
of the solutions simplifies greatly. These solutions are called Stokes
wave solutions. They have the form φ(x) =

√
b exp


ix

√
1 − b


.

The stability of all these boundary cases has been examined to
some extent in the literature. See [8,13,26], among others. Fig. 1
depicts a plot of parameter space with labels for the boundary
cases.

We reformulate our elliptic solutions to (1) using Weierstrass
elliptic functions [24] rather than Jacobi elliptic functions. This
will simplify working with the integral condition (58) in Section 4,
as formulas for integrating Weierstrass elliptic functions are well
documented [21,27]. It is important to note that nothing is lost
by switching to Weierstrass elliptic functions, as we can map any
Weierstrass elliptic function to a Jacobi elliptic function, and vice
versa [24]. Let

℘(z + ω3, g2, g3)− e3 =


K(k)k
ω1

2

sn2

K(k)z
ω1

, k

, (12)

with g2 and g3 the lattice invariants of the Weierstrass ℘ function,
e1, e2, and e3 the zeros of the polynomial 4t3 −g2t −g3, andω1 and
ω3 the half-periods of the Weierstrass lattice given by

ω1 =


∞

e1

dz
4z3 − g2z − g3

, (13)

ω3 = i


∞

−e3

dz
4z3 − g2z + g3

. (14)

We look for stationary solutions to (1) of the form (2). We split φ
into its amplitude and phase, letting

φw(x) = Rw(x)eiθw(x), (15)
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Fig. 1. Visualization of parameter space in terms of b and kwith special solutions on the boundaries labeled.
where Rw and θw are expressed in terms of Weierstrass elliptic
functions. Substituting this ansatz into (3) gives solutions in
Weierstrass form [28]:

θw(x) = ±
i
2


log


σw(x + xw + aw, g2, g3)
σw(x + xw − aw, g2, g3)


+ 2(x + xw)ζw(a)


, (16)

R2
w(x) = e0 − ℘(x + xw, g2, g3), (17)

g2 = 12e20 + K2, (18)

g3 = 4K1 − 8e30 − e0K2, (19)

e0 = −
2ω
3

= ℘(aw, g2, g3). (20)

Here σw and ζw are the Weierstrass σ andWeierstrass ζ functions
respectively [24], and ω, K1, K2, and xw are free parameters. The
constant aw from (20) is given explicitly as

aw = ℘−1(e0, g2, g3). (21)

We can recover the Jacobi elliptic solutions from these solutions by
fixing the free parameters

ω =
1
2


1 + k2 − 3b


, (22)

K 2
1 = c2 = b(1 − b)(b − k2), (23)

K2 = −4

k2 − 2bk2 + 3b2 − 2b


, (24)

xw = iK ′(k), (25)

where K ′(k) is the complement to K(k) given by K ′(k) = K(1−k2).
Under this mapping we have

g2 =
4
3


1 − k2 + k4


, (26)

g3 =
4
27


2 − 3k2 − 3k4 + 2k6


, (27)

e1 =
1
3


2 − k2


, e2 =

1
3


−1 + 2k2


,

e3 =
1
3
(−1 − k2),

(28)

ω1 = K(k), ω3 = iK ′(k). (29)
The homogeneity property of the Weierstrass ℘ function [24],

℘(x, g2, g3) = g
1
2
2 ℘


g

1
4
2 x, 1, g3g

−
3
2

2


(30)

allows us to rewrite (17) as

R2
w(x) = −


g

1
2
2 ℘


g

1
4
2 (x + xw), 1, g3g

−
3
2

2


− e0


, (31)

which has only one varying lattice invariant g3g
−

3
2

2 . This comes at
the cost of rescaling x and the magnitude of the Weierstrass ℘
function. The formulation (31) allows for a display of parameter
space as in Fig. 1, but using the Weierstrass parameters, see Fig. 2.
In this figure, we see where the cn, dn, and Stokes wave solutions
map to in the Weierstrass domain.

3. The linear stability problem

To examine the linear stability of our solutions we consider

Ψ (x, t) = e−iωteiθ(x)

R(x)+ ϵu(x, t)+ ϵiv(x, t)+ O(ϵ2)


, (32)

where ϵ is a small parameter and u(x, t) and v(x, t) are the real and
imaginary parts of our perturbation, which depends on both x and
t . Substituting (32) into (1), isolating O(ϵ) terms, and splitting into
real and imaginary parts, we obtain a system of equations

∂

∂t


u
v


= L


u
v


=


−S L−

−L+ −S


u
v


= J


L+ S
−S L−


u
v


, (33)

with

J =


0 1

−1 0


. (34)

The linear operators L+, L−, and S are given by

L− = −
1
2
∂2x − R2(x)− ω +

c2

2R4(x)
, (35)

L+ = −
1
2
∂2x − 3R2(x)− ω +

c2

2R4(x)
, (36)

S =
c

R2(x)
∂x −

cR′(x)
R3(x)

=
c

R(x)
∂x

1
R(x)

. (37)
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Fig. 2. The parameter space for elliptic solutions in Weierstrass form (31). The cn, dn and Stokes wave solutions are found on the boundaries of this space, with the soliton
solution occurring at the limiting point where the dn and cn curves meet.
An elliptic solution φ(x) = R(x)eiθ(x) is by definition linearly stable
if for all ϵ > 0 there exists a δ > 0 such that if∥u(x, 0)+iv(x, 0)∥ <
δ then ∥u(x, t)+ iv(x, t)∥ < ϵ for all t > 0. This definition depends
on the choice of norm ∥ · ∥ which is specified in the definition of
the spectrum in (40).

Since (33) is autonomous in t , we separate variables to look at
solutions of the form
u(x, t)
v(x, t)


= eλt


U(x)
V (x)


, (38)

resulting in the spectral problem

λ


U
V


= L


U
V


=


−S L−

−L+ −S


U
V


= J


L+ S
−S L−


U
V


. (39)

Here

σL =


λ ∈ C : max

x∈R
(|U(x)|, |V (x)|) < ∞


, (40)

or

U, V ∈ C0
b (R). (41)

In order to have spectral stability, we need to demonstrate
that the spectrum σL does not enter into the right half of the
complex λ plane. Since (1) is Hamiltonian [29], the spectrum of
its linearization is symmetric with respect to both the real and
imaginary axis [30]. In other words, proving spectral stability
for elliptic solutions to (1) amounts to proving that the stability
spectrum lies strictly on the imaginary axis. In our case, we show
that none of the elliptic solutions are spectrally stable, as we
demonstrate spectral elements in the right-half plane near the
origin for any choice of the parameters b and k.

4. The Lax pair

We wish to obtain an analytical representation for the
spectrum σL. As mentioned in the introduction, this analytical
representation comes from the squared eigenfunction connection
between the linear stability problem (33) and its Lax pair.We begin
by formulating (1) in a traveling frame, by defining

Ψ (x, t) = e−iωtψ(x, t), (42)
so that ψ satisfies

iψt = −ωψ −
1
2
ψxx − ψ |ψ |

2. (43)

This equation is equivalent to the compatibility conditionχxt = χtx
of the following Lax pair [31]:

χx =


−iζ ψ
−ψ∗ iζ


χ, (44)

χt =

−iζ 2
+

i
2
|ψ |

2
+

i
2
ω ζψ +

i
2
ψx

−ζψ∗
+

i
2
ψ∗

x iζ 2
−

i
2
|ψ |

2
−

i
2
ω

χ, (45)

where ∗ represents the complex conjugate [19,17]. Regarding (44)
as a spectral problem with ζ as the spectral parameter:

i∂x −iψ
−iψ∗

−i∂x


χ = ζχ, (46)

we see that it is not self adjoint [32]. This means that the spectral
parameter ζ is not necessarily confined to the real axis as it was for
defocusing NLS [17] whichmakes our analysis more difficult. Since
the elliptic solutions are given by ψ(x, t) = φ(x), we restrict the
Lax pair to elliptic solutions by writing

χx =


−iζ φ
−φ∗ iζ


χ, (47)

χt =

−iζ 2
+

i
2
|φ|

2
+

i
2
ω ζφ +

i
2
φx

−ζφ∗
+

i
2
φ∗

x iζ 2
−

i
2
|φ|

2
−

i
2
ω

χ. (48)

Henceforth we refer to the spectrum of (47) as σL or informally as
the Lax spectrum. Specifically,σL consists of all ζ forwhich (47) has
a bounded (in x) eigenfunction solution. To determine σL we start
by rewriting (48) in the short-hand form

χt =


A B
C −A


χ, (49)
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where

A = −iζ 2
+

i
2
|φ|

2
+

i
2
ω, (50)

B = ζφ +
i
2
φx, (51)

C = −ζφ∗
+

i
2
φ∗

x . (52)

Since A, B, and C are independent of t , we separate variables. Let

χ(x, t) = eΩtϕ(x), (53)

with Ω being independent of t but possibly depending on x.
Substituting (53) into (49) and canceling the exponential, we find
A −Ω B

C −A −Ω


ϕ = 0. (54)

In order to have nontrivial solutions we require the determinant of
(54) to be zero. Using the definitions of A, B and C , we get

Ω2
= A2

+ BC = −ζ 4
+ ωζ 2

+ cζ

+
1
16


−4ωb − 3b2 − k′4


, (55)

where k′
=

√
1 − k2. We notice thatΩ is not only independent of

t but also of x. Thus Ω is strictly a function of ζ and the solution
parameters.

To satisfy (54), we let

ϕ(x) = γ (x)


−B(x)
A(x)−Ω


, (56)

where γ (x) is a scalar function. By construction of ϕ(x), χ(x, t)
satisfies (48). Since (47) and (48) commute, it is possible to choose
γ (x) such that χ also satisfies (47). Indeed, γ (x) satisfies a first-
order linear equation, whose solution is given by

γ (x) = γ0 exp


−


(A −Ω)φ + Bx + iζB

B
dx

. (57)

For almost every ζ ∈ C, we have explicitly determined the two
linearly independent solutions of (47), i.e., those corresponding to
the positive and negative signs ofΩ in (55). AssumingΩ ≠ 0 these
two solutions are by construction linearly independent. In the case
where ζ corresponds toΩ = 0 the second solution to (47) can be
determined via the reduction-of-order method.

Since (47) and (48) share their eigenfunctions, σL is the set of
all ζ ∈ C such that (56) is bounded for all x ∈ R. Indeed, the
vector part of ϕ is bounded for all x, so we only need that the scalar
function γ (x) is bounded as x → ±∞. A necessary and sufficient
condition for this is
Re

(A −Ω)φ + Bx + iζB

B


= 0, (58)

where ⟨·⟩ is the average over one period 2K(k) of the integrand,
and Re denotes the real part. At this point, the integral condition
(58) completely determines the Lax spectrum σL.

5. The squared eigenfunction connection

A connection between the eigenfunctions of the Lax pair (47)
and (48) and the eigenfunctions of the linear stability problem (33)
using a squared eigenfunctions is well known [19]. We prove the
following theorem.
Theorem 5.1. The vector
u
v


=


e−iθ(x)χ2

1 − eiθ(x)χ2
2

−ie−iθ(x)χ2
1 − ieiθ(x)χ2

2


(59)

satisfies the linear stability problem (33). Here χ = (χ1, χ2)
T is any

solution of the Lax pair (44)–(45) corresponding by direct calculation
to the elliptic solution φ(x) = R(x)eiθ(x).

Proof. The proof is done by direct calculation. For the left-hand
side of (33), evaluate (ut , vt) using the product rule and (45).
Eliminate x-derivatives of u and v (up to order 2) using (44). Upon
substitution and using (47) and (48), the left-hand side and right-
hand side of (33) are equal, finishing the proof. �

To establish the connection between the σL spectrum and the
σL spectrum we examine the right- and left-hand sides of (38).
Substituting in (59) and (53) to the left-hand side of (38) we find

e2Ωt


e−iθ(x)ϕ2
1 − eiθ(x)ϕ2

2
−ie−iθ(x)ϕ2

1 − ieiθ(x)ϕ2
2


= eλt


U
V


, (60)

and we conclude that

λ = 2Ω(ζ ), (61)

with eigenfunctions given by
U
V


=


e−iθ(x)ϕ2

1 − eiθ(x)ϕ2
2

−ie−iθ(x)ϕ2
1 − ieiθ(x)ϕ2

2


. (62)

This gives the connection between the σL spectrum and the σL

spectrum. It is also necessary to check that indeed all solutions of
(39) are obtained through (60). This is not shown explicitly here,
but is done analogous to the work in [17].

Although in principle the above construction determines σL,
it remains to be seen how practical this determination is. In the
following section we discuss a technique for explicitly integrating
(58) usingWeierstrass elliptic functions, leading to a more explicit
characterization of σL.

6. The Lax spectrum in terms of elliptic functions

In terms of Weierstrass elliptic functions,

Ω2
= −ζ 4

+ ωζ 2
+ K1ζ +

1
4


−ω2

−
K2

4


, (63)

while (58) becomes

Re
 2ω1

0

(A −Ω)φw + Bx + iζB
B

dx = 0, (64)

with A and B given in (50) and (51). Substituting forφw we find that
(64) is of the form

Re
 2ω1

0

C1 + C2℘(x)+ C3℘
′(x)

C4 + C5℘(x)
dx = 0, (65)

here℘(x) = ℘(x+ xw, g2, g3)with the dependence on xw, g2, and
g3 suppressed. The Cj’s depend on ζ but are independent of x. They
are given by

C1 = −
2ωζ
3

−
K1

2
+ ζ 3

−
ωζ

6
− iζΩ(ζ ),

C2 = −
ζ

2
, C3 =

i
4
,

C4 = −Ω(ζ )− iζ 2
+ i
ω

6
, C5 = −

i
2
.

(66)
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We can evaluate the integral in (65) explicitly [27]. We find

Re

2ω1C2

C5
+

4(C1C5 − C2C4)

℘ ′(α)C2
5

(ζw(α)ω1 − ζw(ω1)α)


= 0, (67)

with

α = α(ζ ) = ℘−1


−
C4(ζ )

C5(ζ )
, g2, g3


. (68)

Here℘−1 is a multivalued function, but for the sake of our analysis
α is chosen as any value such that ℘(α) = −C4(ζ )/C5(ζ ).
Substituting for the Cj’s, (65) becomes

Re


−2iζω1 +

4i

−K1 + 4ζ 3

− 2ζω − 4iζΩ(ζ )


℘ ′(α)

× (ζw(α)ω1 − ζw(ω1)α)


= 0. (69)

We simplify this further by recognizing that

℘ ′2(α) = 4℘3(α)− g2℘(α)− g3

= 4


−
C4(ζ )

C5(ζ )

3

− g2


−

C4(ζ )

C5(ζ )


− g3. (70)

Substituting for C4(ζ ) and C5(ζ ), changing g2 and g3 to K1 and K2
via (18) and (19) respectively, and substituting in (63) for higher
powers ofΩ(ζ ) gives

℘ ′2(α) = −4

−K1 + 4ζ 3

− 2ζω − 4iζΩ(ζ )
2
. (71)

Thus (69) simplifies to

Re (−2iζω1 + 2τ (ζw(α)ω1 − ζw(ω1)α)) = 0, (72)

where τ = sgn

Re

−K1 + 4ζ 3

− 2ζω − 4iζΩ(ζ )

.

Under the mapping (29), and applying the formula for the
Weierstrass ζ function evaluated at a half period [21], ζw(ω1) =
√
e1 − e3


E(k)−

e1
e1−e3

K(k)

, (72) becomes

Re

−2iζK(k)+ 2τ


ζw(α)K(k)

−


E(k)−

1
3


2 − k2


K(k)


α


= 0. (73)

Here

E(k) =

 π/2

0


1 − k2 sin2 ydy, (74)

is the complete elliptic integral of the second kind. At this point,
we have simplified the integral condition (64) as much as possible.
Thus ζ ∈ σL if and only if (73) is satisfied. To simplify notation, let

I(ζ ) = −2iζω1 + 2τ (ζw(α)ω1 − ζw(ω1)α) , (75)

so that (73) is

Re [I(ζ )] = 0. (76)

Next, we wish to examine the level sets of the left-hand side of
(76). To this end,wedifferentiate I(ζ )with respect to ζ . To evaluate
this derivative we use the chain rule and note that
∂

∂ζ
ζw(α) = −℘(α)

∂α

∂ζ

=
C4(ζ )

C5(ζ )

d℘−1

dζ


−

C4(ζ )

C5(ζ )
, g2, g3


−

C4(ζ )

C5(ζ )

′

. (77)
Since

d
dz
℘−1


−

C4(ζ )

C5(ζ )
, g2, g3


=

1

℘ ′


℘−1


−

C4(ζ )
C5(ζ )

, g2, g3


=
1

℘ ′(α)
, (78)

we can use (71) to obtain

dI(ζ )
dζ

=
2E(k)−


1 + b − k2 + 4ζ 2


K(k)

2Ω(ζ )
. (79)

Simply taking the real part of (79) does not give another
characterization of the spectrum. Instead, if we think of (73) as
restricting ourselves to the zero level set of the left-hand side. Then
we use (79) to determine a tangent vector field which allows us to
map out level curves originating from any point. This is explained
in more detail in Section 8. Additionally, there we see that (79)
is useful in determining the boundary regions in parameter space
corresponding to qualitatively different parts of the spectrum.

7. The σL spectrum on the imaginary axis

In this section we discuss σL ∩ iR. As we demonstrate, this
corresponds to the part of σL lying on the real axis. Using (73) we
obtain analytic expressions for σL ∩ R, and thus for σL ∩ iR.

First, we consider ζ ∈ R. As we demonstrate below, (73) is
satisfied for any real ζ . Using (63) and (61), we determine the
corresponding parts of σL.

Theorem 7.1. The condition (73) is satisfied for all ζ ∈ R.

Proof. Since k, K(k), and E(k) are real, it suffices to show that
α ∈ iR and ζw(α) ∈ iR. Since ζw with g2, g3 ∈ R takes real values
to real values and purely imaginary values to purely imaginary
values [24], it suffices to show that α = ℘−1


−

C4(ζ )
C5(ζ )

, g2, g3


∈

iR. For g2, g3 ∈ R, ℘(R, g2, g3) maps to [e1,∞), and since
℘(ix, g2, g3) = −℘(x, g2,−g3)we have that℘(iR, g2, g3)maps to
(−∞, e3]. Thuswe need to show that ζ , −

C4(ζ )
C5(ζ )

≤ e3. Substituting
for C4(ζ ) and C5(ζ ), we want to show Eq. (80) is given in Box I.
Simplifying the left- and right-hand sides of this expression yields

4ζ 2
+


1 + k2 − b − 4ζ 2

2
+ 4


2
√
bζ −


(1 − b)(b − k2)

2
≥ 1 + k2 − b. (81)

There are two cases. If 4ζ 2
≥ 1+ k2 − bwe are done, as the square

root term is nonnegative. If 4ζ 2 < 1 + k2 − b, we have

4ζ 2
+


1 + k2 − b − 4ζ 2

2
+ 4


2ζ

√
b −


(1 − b)(b − k2)

2
≥ 4ζ 2

+


1 + k2 − b − 4ζ 2

2
. (82)

Since 1+k2−b−4ζ 2 > 0, this gives (81) aswewished to prove. �

At this point, we know that R ⊂ σL. We wish to see what this
corresponds to for σL. Looking at (63), we notice that

Ω2
= −

1
16

 
1 + k2 − b − 4ζ 22

+ 4

2ζ

√
b −


(1 − b)(b − k2)

2
. (83)
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0)

1
6


2ω − 12ζ 2

− 3

1 − 3b2 + k4 − 16cζ − 8ζ 2 + 16ζ 4 − 2k2


1 + 4ζ 2


+ 2b


1 + k2 + 12ζ 2


≤ e3. (8

Box I.
Fig. 3. Ω2 as a function of real ζ for various values of b and k: (a) cn case with (k, b) = (0.2, 0.04); (b) dn case with (k, b) = (0.5, 1); (c) general nontrivial-phase case with
one maximum with (k, b) = (0.8, 0.8); (d) general nontrivial-phase case with two maxima with (k, b) = (0.2, 0.05).
For convenience define

SΩ =


Ω : Ω2

= −
1
16

 
1 + k2 − b − 4ζ 22

+ 4

2ζ

√
b −


(1 − b)(b − k2)

2
andζ ∈ σL


. (84)

Thus when ζ ∈ R, Ω(ζ ) ∈ iR necessarily, since Ω2(ζ ) < 0.
Applying (61), we see that ζ ∈ R corresponds to imaginary
spectral elements of σL. Representative plots of Ω2 are shown
in Fig. 3. The subset of SΩ corresponding to ζ ∈ R consists of
(−∞,−i|Ωm|] ∪ [i|Ωm|,∞), whereΩm is the maximum value of
Ω . The set SΩ is in general at least double covered as for almost
every value of Ω there are at least two values of ζ which map to
it. The spectrum on the imaginary axis is quadruple covered if the
quartic (63) has four distinct real roots ζ , as is the case in Fig. 3(d)
forΩ2

∈ (−0.0639,−0.0243).
The condition for a subset of the spectrum to have a quadruple

covering is readily determined. We require that the quarticΩ2(ζ )
has three critical values, i.e., that its derivative has three distinct
roots. Examining the discriminant of (63) with respect to ζ , we see
that if

k2 < b <
1 + 3k2 + 3k4 + k6

9(1 − k2 + k4)
, (85)

then there is a region of the imaginary axis which is quadruple
covered. We show a plot of parameter space separated into two
distinct regions by this condition in Fig. 4. In the upper region, the
subset of σL on the imaginary axis has no quadruple covering. In
the lower region there is a quadruple covering.

To explicitly determine the location of the covering on the
imaginary axis, we need the local extrema ofΩ2. In the case when
(85) is satisfied, the three extremaΩ2
c ofΩ2 satisfy the cubic inΩ2

c

−16k4(−1 + k2)2 − 32

−4k2 + 32k4 − 4k6 + 27bg3


Ω2

c
+ 256(−1 − 18b + 27b2 + 10k2 − 18bk2 − k4)Ω4

c − 4096Ω6
c

= 0.
(86)

Labeling the real roots asΩ2
c1, Ω

2
c2, Ω

2
c3, withΩ2

c1 < Ω2
c2 < Ω2

c3,
we have that the σL spectrum is double covered on the region

−i∞,−2

Ω2

c3


∪


−2

Ω2

c2,−2

Ω2

c1


∪


2

Ω2

c1, 2

Ω2

c2


∪

2

Ω2

c3, i∞

, and quadruple covered on the region


−2

Ω2

c3,

−2

Ω2

c2


∪


2

Ω2

c2, 2

Ω2

c3


. If (85) is not satisfied, the σL

spectrum has no quadruple covering, and is double covered on the

region

−i∞, 2


Ω2

c∗


∪


2

Ω2

c∗ , i∞

, where Ω2

c∗ is the only
real root of (86).

The extent of the spectrum σL on the imaginary axis vastly
simplifies for the cnoidal wave, the dnoidal wave, and the Stokes
wave solutions because (63) is biquadratic in the former two
cases, and because k = 0 in the latter case. We detail these
boundary cases belowgiving theσL spectrum. For dn solutions, the
imaginary axis is double covered on the region


−i∞,−ik2/2


∪

ik2/2, i∞

. This confirms results in [33,26]. For cn solutions, if k <

√
2/2, the imaginary axis is double covered from (−i∞,−i/2) ∪

(i/2, i∞) , and quadruple covered from

−i/2,−ik

√
1 − k2


∪

ik
√
1 − k2, i/2


. Finally, for the Stokes wave solutions, if b >

1/9, then iR ⊂ σL and is double covered. If b < 1/9,
then the imaginary axis is still fully double covered except from
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Fig. 4. Parameter space split using (85) in the region for which a subset of σL ∪ iR
is quadruple covered given by (85) (dark lower region), and only double covered
(light upper region). The lower region comes to a point at (k, b) = (

√
2/2, 1/2).

(−S+,−S−) ∪ (S−, S+) ,where it is quadruple covered, here

S± =


−1 ∓

√
(1 − 9b)(1 − b)+ 9b


−2 ±

√
(1 − 9b)(1 − b)+ 3b


2
√
2

.

(87)

8. Qualitatively different parts of the spectrum

Up to this point we have discussed only the subset of σL that
is on the imaginary axis. In this section we discuss the rest of the
spectrum. In general, for all choices of the parameters b and k, a
part of the spectrum σL is in the right-half plane (corresponding to
unstablemodes).We split parameter space into five regions where
σL \ iR is qualitatively different. Here σL \ iR refers to the closure
of σL not on the imaginary axis.

We refer to Fig. 5, which shows (k, b)parameter space with
curves that split it into regions where σL \ iR spectrum is
qualitatively different. The exact curves splitting up the regions,
as well as their derivations, are given below. In Fig. 6(1) we
show representative plots of σL for the trivial-phase solutions on
the boundary of parameter space, and in Fig. 6(2) we show the
corresponding σL spectrum. Additionally, we plot the ζ choices for
which Ω(ζ ) ∈ iR. These curves are used to split up parameter
space. The stability of trivial-phase solutions has beenwell studied
in the literature [33,8,13,26]. The Stokes wave solutions have
constant magnitude and their stability problem has constant
coefficients. Thus it is significantly easier to analyze.

For the dn solutions, σL \ iR consists of a quadruple covered
finite interval on the real axis. For Stokes wave solutions σL \ iR
consists of a single-covered figure 8, and σL \ iR for cn solutions
consists of a double covered figure 8. There are two cases for the
cn solutions. Either σL ∩ iR pierces the figure 8 (see Fig. 6(1c)),
or it does not (see Fig. 6(1d)). The exact value of k separating the
closure of the regions is given below.

For these trivial-phase cases, much can be proven and
quantified explicitly, i.e., not in terms of special functions.
Specifically, for the spectrum in the Stokes wave case we give a
parametric description for the figure 8 curve. For the spectrum for
the dn case we calculate the extent of the covering of σL ∩ iR. For
the spectrum in the piercing cn case, we give an explicit expression
Fig. 5. A colored plot of parameter space with regions corresponding to different
qualitative behavior in the linear stability spectrum. Regions I and II: two nested
figure 8s; region III: non-self-intersecting butterflies; region IV: self-intersecting
butterflies; region V: one triple-figure 8 inside of a figure 8. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

for where the top (or bottom) of the figure 8 crosses the imaginary
axis. Additionally, we have an explicit expression for the tangents
to σL leaving the origin in both cn cases. In fact, we are able to
approximate the spectrum at the origin using a Taylor series to
arbitrary order. These series give a good approximation to the
greatest real part of the figure 8 using only a few terms.

In the interior of parameter space we examine the nontrivial-
phase solutions. Four cases appear and plots of the σL spectrum
for representative choices of k and b are seen in Fig. 7. The cases
are as follows

(7-1a) σL \ iR consists of two single-covered figure 8s, resulting
in the degenerate double covered case of σL \ iR for cn
solutions.

(7-1b) We have a single-covered non-self-intersecting butterfly.
As b → 1 thewings of this butterfly collapse to the real axis
and the spectrum for dn solutions is seen with a quadruple
covering on the real axis.

(7-1c) σL \ iR is a single-covered triple-figure 8 inside of a single-
covered figure 8.

(7-1d) σL \ iR consists of a single-covered self-intersecting but-
terfly, which is seen as a perturbation of σL \ iR for the cn
solutions as the double covered figure 8 splits apart hori-
zontally.

In fact, there are two non-connected regions in parameter space
for which we have two single-covered figure 8, but qualitatively
the spectrum is the same so we do not show samples from both
regions.

For the nontrivial-phase case less can be determined explicitly.
That said, we present an explicit expression for the slope of the
spectrum for any nontrivial-phase solution as it leaves the origin.
Since at least some of these slopes are finite, this settles the
conjecture of Rowlands [7] that all stationary solutions of (1) are
unstable. Moreover, a Taylor series expansion around the origin
can be obtained for all cases and it well approximates the largest
real part with a small number of terms. Additionally, explicit
expressions for the tops (or bottoms) of the figure 8s in both cases
with figure 8s are given.
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Fig. 6. (1) σL for the trivial-phase cases and (2) the corresponding σL spectra (solid lines), values forwhich Re (Ω(ζ )) = 0 (dotted). In (1), color corresponds to region in Fig. 5
and thickness of curves corresponds to single, double, or quadruple covering going from thinnest to thickest. (a) Stokes wave solution, regions I and II, (k, b) = (0, 0.08); (b)
dn solution, region III, (k, b) = (0.9, 1); (c) cn solution with piercing, region I, (k, b) = (0.65, 0.4225); (d) cn solution without piercing, region IV, (k, b) = (0.95, 0.9025).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
A starting point for solving (73) for ζ is to recognize that if ζ
satisfiesΩ2(ζ ) = 0, then ζ must satisfy (73). This is due to the fact
that the origin is always included in σL and hence in SΩ . In fact,
the four roots of the quartic Ω2

= 0 corresponds to the fact that
0 ∈ σL with multiplicity four. This is seen from the symmetries of
(1) and by applying Noether’s Theorem [34,1].

It may be instructive to see this explicitly. In the general case,
the roots ofΩ2(ζ ) are

ζc =

√
1 − b
2

± i

√
b −

√
b − k2

2
,

−

√
1 − b
2

± i

√
b +

√
b − k2

2


. (88)

These roots are seen in Figs. 6–8 (bottom) as the intersections
between the solid and dotted lines lying off of the real axis. Indeed,
as long as b, k > 0, these points have nonzero imaginary part,
and other ζ ∈ σL \ R can be found by following the level curves
of (73) originating from these points. For convenience we label
these four roots ζ1, ζ2, ζ3, ζ4, where the subscript corresponds to
the quadrant on the real and imaginary plane the root is in.

To better examine this we look at the tangent vector field to the
level curve (76). If we let ζ = ζr + iζr , then

I(ζ ) = I(ζr + iζi) = −2i(ζr + iζi)K(k)

± 2

ζw(α)K(k)−


E(k)−

1
3


2 − k2


K(k)


α


. (89)

The level curve {ζ ∈ C : Re [I(ζ )] = 0}, is exactly the condition
for ζ ∈ σL. Taking derivatives with respect to ζr and ζi gives a
normal vector field to the level curves of the general condition
Re [I(ζ )] = C for any constant C , specifically, the normal vector
is given by
dRe [I(ζr + iζi)]

dζr
,
dRe [I(ζr + iζi)]

dζi


.

Thus, the tangent vector field is
−

dRe [I(ζr + iζi)]
dζi

,
dRe [I(ζr + iζi)]

dζr


.

By applying the chain rule and using the fact that Re[iz] = −Im[z],
we have that the tangent vector field to the level curves is
Im

dI
dζ


, Re


dI
dζ


.

Substituting this back into (79), the tangent vectors are
Im


2E(k)−


1 + b − k2 + 4ζ 2


K(k)

2Ω(ζ )


,

Re


2E(k)−


1 + b − k2 + 4ζ 2


K(k)

2Ω(ζ )


. (90)

Thus, given a point in the σL spectrum (lying on the 0 level curve
of Re [I(ζ )]), we can follow the tangent vector field to find other
points in the σL spectrum.

8.1. Stokes wave case

Applying this idea to the Stokes wave case, we see that
generically

ζc =

√
1 − b
2

,

√
1 − b
2

,−

√
1 − b
2

± i
√
b,

i.e., there is a double root on the real axis and two conjugate roots.
Following level curves we see that

∀ζi ∈ [−
√
b,

√
b], −

√
1 − b
2

+ iζi ∈ σL. (91)



10 B. Deconinck, B.L. Segal / Physica D 346 (2017) 1–19
Fig. 7. (1) σL for the nontrivial-phase cases and (2) the corresponding σL spectra (solid lines), values for which Re (Ω(ζ )) = 0 (dotted). In (1), color corresponds to region
in Fig. 5. (a) Double-figure 8 solution, regions I and II, (k, b) = (0.65, 0.423); (b) non-self-intersecting butterfly solution, region III, (k, b) = (0.9, 0.95); (c) triple-figure 8
solution, region V, (k, b) = (0.89, 0.84); (d) self-intersecting butterfly solution, region IV, (k, b) = (0.9, 0.85). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Substituting this into (63), we find that the σL spectrum for Stokes
waves is given parametrically as a single-covered figure 8:

λ = ±


2

bζ 2

i − ζ 4
i + 2i sgn(ζi)


(1 − b)(b − ζ 2

i )


for ζi ∈ [−

√
b,

√
b]. (92)

Plots of theσL and theσL spectra are seen in Fig. 6(a) for k = 0, b =

0.08.

8.2. dn case

Similarly, in the dn case we find that
−

1 +
√
1 − k2

2
i,−

1 −
√
1 − k2

2
i



∪


1 −

√
1 − k2

2
i,

1 +
√
1 − k2

2
i


∈ σL, (93)

where [·, ·] corresponds to the straight line segment between its
two endpoints. Mapping this back to σL via (63), we find that there
is a quadruple covering of the real axis
−


1 − k2,


1 − k2


∈ σL. (94)

Representative plots of these spectrum are seen in Fig. 6(b). This
corrects a typo in [26], and confirms the conjecture made in [33].

8.3. cn case

For the cn case, less is known explicitly. Representative plots of
the σL spectrum are shown in Fig. 6(2c), (2d). In both cases we have
a quadrafold symmetry. The distinguishing factor between the two
cases in (c) and (d) is whether or not σL \ R leaving ζc crosses the
real axis or the imaginary axis. Examining (90) on the real axis we
can determine the condition for a vertical tangent to occur. This
happens when

ζ = ±

√
2E(k)− K(k)
2
√
K(k)

. (95)

Equating ζ = 0, we solve for k such that the vertical tangent occurs
at the origin.With 2E(k∗)−K(k∗) = 0,we find that k∗

≈ 0.908909.
This gives two cases: if k < k∗ then σL \ R crosses the real axis,
and if k > k∗ then σL \ R crosses the imaginary axis. When k < k∗

we know the crossing of the real axis occurs when ζ satisfies (95).
Mapping this back to σL, we see that this point corresponds to the
top (or bottom) of the figure 8

λ = ±i


(1 − k2)K 2(k)− 2(1 − k2)E(k)K(k)+ E2(k)

K(k)
. (96)

For all k < k∗ the figure 8 is pierced by the covering on the
imaginary axis as seen in Fig. 6(1c), but as k → k∗, (96) approaches
±i/2 which is the extent of the covering on the imaginary axis as
seen in Section 7. Thus for k > k∗, the figure 8 is no longer pierced
by σL ∩ iR, as is the case in Fig. 6(1d).

8.4. Nontrival-phase cases

Plots of generic cases of the σL spectrum are seen in
Fig. 7(2a)–(2d). The idea of whether σL \ R crosses the real or
imaginary axis still applies. The same analysis as above yields
conditions on when ζ crosses the real axis. We find that when

ζ = ±


2E(k)− K(k)− (b − k2)K(k)

2
√
K(k)

, (97)
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8)
λ = ±i

 E2(k)
K 2(k)

− 2(1 − b)
E(k)
K(k)

+ (1 − 2b2 − k2 + 2bk2)+ 2c


2
E(k)
K(k)

+ k2 − b − 1, (9

Box II.
9)
λ = ±i

 E2(k)
K 2(k)

− 2(1 − b)
E(k)
K(k)

+ (1 − 2b2 − k2 + 2bk2)− 2c


2
E(k)
K(k)

+ k2 − b − 1. (9

Box III.
σL \ R crosses the real axis. Mapping this back to σL, this
corresponds to the top (or bottom) of the outside figure 8 Eq. (98)
is given in Box II: and the top (or bottom) of the enclosed figure 8
(or triple-figure 8) Eq. (99) is given in Box III:

We note that ζ < 0 in (97) corresponds to the top (or bottom)
of the outside figure 8 in (98), while ζ > 0 in (97) corresponds to
the top (or bottom) of the enclosed figure 8 in (99). This is difficult
to show directly, but is seen from the more general result that for
any ζ ∈ R, Ω2(−|ζ |) > Ω2(|ζ |), which is derived directly from
(83).

Equating ζ = 0 in (97) gives the condition for differentiating
between figure 8’s and butterflies:

b = −1 + k2 +
2E(k)
K(k)

. (100)

If b is less than this value the spectrum looks like in Fig. 7(1a) or
(1c), and if b is greater than this value the spectrum looks like
in Fig. 7(1b) or (1d). In Fig. 8(a) we show the case when (100) is
exactly satisfied.

Next we examine the slopes of the σL curves at the origin.
Because σL = 2SΩ it suffices to examine the slopes for the set
SΩ . We letΩ = Ωr + iΩi, and we consider ζi as a function of ζr so
thatΩ (ζr , ζi(ζr)). Applying the chain rule we have that the slope
at any point in the set SΩ is

dΩi

dΩr
=

dΩi/dζr
dΩr/dζr

=

dΩi
dζr

+
dΩi
dζi

dζi
dζr

dΩr
dζr

+
dΩr
dζi

dζi
dζr

, (101)

where

dζi
dζr

= −
dRe(I)/dζr
dRe(I)/dζi

. (102)

We examine (101) near where Ω = 0 and ζ = ζc . The slopes
around the origin are given in Box IV. In the cn case (b = k2) the
slopes at the origin simplify to

dΩi

dΩr
= ±

kE(k)
√
1 − k2(E(k)− K(k))

. (105)

For the cn solutions, these slopes are always finite. This is not
necessarily the case for nontrivial-phase solutions. Specifically,
while the slopes in (104) are always finite, the slopes in (103) can
be infinite if
b − 1 −


b(b − k2)


E(k)+ (1 − k2)K(k) = 0. (106)

Spectra corresponding to solutions for which this condition is
satisfied are shown in Fig. 8(b). The condition corresponds to the
splitting between the two butterfly regions, as well as the upper
splitting between the triple-figure 8 and the figure 8s regions. See
Fig. 5. Further application of the chain rule can yield expressions for
derivatives around the origin of any order, and the same technique
can be applied around the top of the figure 8s. In doing this we can
obtain Taylor series approximations of σL to any order.

Finally, an expression is obtained for the lower boundary of the
triple-figure 8s and figure 8s regions. A representative example of
this case is seen in Fig. 8(c). The boundary between these regions
occurs at the bifurcationwhenσL∩iR andσL \ ıR have a threefold
intersection, see Fig. 9(b). This occurs when

Rt(b, k) =


2E(k)− K(k)− bK(k)+ k2K(k)

4K(k)
, (107)

where Rt(b, k) is the smallest real root of the cubic equation

− c +

−1 + 3b − k2


Y + 4Y 3

= 0. (108)
This is seen directly as the left-hand side of (107) gives the point
when Re(Ω) = 0 intersects the real axis and the right-hand side is
(97), the point where σL \ R intersects the real axis.

In Fig. 9, we plot σL ∩ C+. In C+ there are two lobes to the
triple-figure 8, one near the origin and one away from the origin,
see Fig. 9(c), (d). For triple-figure 8s near the lower boundary of the
region as in Fig. 9(c), the lobe of σL \ iR near the origin is larger
than the lobe away from the origin. In contrast, for triple-figure 8s
near the upper boundary of the region, see Fig. 9(d), the lobe of
σL \ iR away from the origin is larger.

We also mention the four curves of σL \ iR near the origin
which we label i, ii, iii and iv in Fig. 9. These curves give a
distinguishing feature between regions I and II in Fig. 5 both with
two figure 8s. Specifically, the curves iii and iv of σL \ iR for
the enclosed figure 8 near the origin switch places. This is seen
from examining the slopes of these curves in (103) and also by
comparing the relative positions of curves c and d in Fig. 9(a) and
(f).

Lastly, we mention the four-corners point seen in Fig. 8(d). This
point occurs at the intersection of (100) and (106), the intersection
of all four nontrivial-phase regions. At this point, σL \ iR has
vertical tangents at the origin as well as a four-way intersection
point on the imaginary axis corresponding to ζ = 0 in σL.

9. Floquet theory and subharmonic perturbations

We examine σL using a Floquet parameter description. We
use this to prove some spectral stability results with respect to
perturbations of an integer multiple of the fundamental period of
the solution, i.e., subharmonic perturbations.

Note that the solutions to the stationary problem (3) are not
periodic in general, as they may have a nontrivial phase. On the
other hand, (39) is a spectral problem with periodic coefficients
since it depends only on R(x).

We write the eigenfunctions from (39) using a Floquet–Bloch
decomposition
U(x)
V (x)


= eiµx


Û(x)
V̂ (x)


,

Û (x + T (k)) = Û(x), V̂ (x + T (k)) = V̂ (x)

(109)
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Fig. 8. (1) σL for the cases separating regions and (2) the corresponding σL spectra (solid lines), values for which Re (Ω(ζ )) = 0 (dotted). In (1), color corresponds
to location in Fig. 5. (a) Split between figure 8s and butterflies, (k, b) = (0.75, 0.942384); (b) split between self-intersecting and non-self-intersecting butterflies,
(k, b) = (0.95, 0.929542); (c) lower split between figure 8 and triple-figure 8, (k, b) = (0.9, 0.821993); (d) four-corners point, (k, b) = (0.876430, 0.863399). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3)

4)
dΩi

dΩr
= ±


2

b(1 − b)(b − k2)+

√
1 − b(k2 − 2b)


E(k)√

b − k2 −
√
b
 

b − 1 −

b(b − k2)


E(k)+ (1 − k2)K(k)

 , (10

dΩi

dΩr
= ±


2

b(1 − b)(b − k2)−

√
1 − b(k2 − 2b)


E(k)√

b − k2 +
√
b
 

−


b − 1 −


b(b − k2)


E(k)+ (1 − k2)K(k)

 (10

Box IV.
with µ ∈ [−π/T (k), π/T (k)) [33,17]. Here T (k) = 2K(k) for all
solutions, except T (k) = 4K(k) for the cn solution. From Floquet’s
Theorem [33], all bounded solutions of (39) are of this form, andour
analysis includes perturbations of an arbitrary period. Specifically,
µ = 2mπ/T (k) for m ∈ Z corresponds to perturbations of the
same period T (k) of our solutions, and in general,

µ =
2mπ
PT (k)

, m, P ∈ Z, (110)

corresponds to perturbations of period PT (k). The choice of the
specific range of µ is arbitrary, as long as it is of length 2π/T (k).
For added clarity in this section, we plot some figures using the
larger range [−2π/T (k), 2π/T (k)), before modding out, reducing
the µ interval to [−π/T (k), π/T (k)).

In the previous sections σL is parameterized in terms of ζ .
We wish to parameterize σL in terms of µ. We examine the U
eigenfunction from (109). From the periodicity of Û we have

eiµT (k) =
U(x + T (k))

U(x)
. (111)
Using (62), (56), and (57), we have

eiµT (k) = exp


−2
 T (k)

0

(A(x)−Ω)φ + Bx(x)+ iζB(x)
B(x)

dx


× exp (iθ(T (k))) , (112)

where we have used the periodicity properties

A (x + T (k)) = A(x),

B (x + T (k)) = B(x)eiθ(T (k)),
θ (x + T (k)) = θ(x)+ θ (T (k)) .

(113)

Using (73),

µ(ζ ) =
2iI(ζ )
T (k)

+
θ (T (k))
T (k)

+
2πn
T (k)

, (114)

where I(ζ ) is given in (89), n ∈ Z, and

θ(T (k)) =


 T (k)

0


b(1 − b)(b − k2)
b − k2sn2(y, k)

dy, if b > k2,

π, if b = k2,
(115)

from (7). Eq. (114) relates the two spectral parameters ζ and µ.
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Fig. 9. (1) σL in the upper-half plane for a sequence of parameter values demonstrating the boundaries of the triple-figure 8 region. (a) Two figure 8s, lower region, (k, b) =

(0.89, 0.8); (b) lower boundary of triple-figure 8 region, (k, b) = (0.895, 0.819747), the enclosed figure 8 is not smooth at the top; (c) triple-figure 8 near lower boundary,
(k, b) = (0.895, 0.84); (d) triple-figure 8 near upper boundary, (k, b) = (0.887, 0.85); (e) upper boundary of the triple-figure 8 region, (k, b) = (0.875, 0.862349); (f) Two
figure 8s, upper region, (k, b) = (0.86, 0.87).
Fig. 10. The real part of the spectrum Re(λ) (vertical axis) as a function of µT (k) (horizontal axis). T (k)µ = 2mπ/P for integers m and P corresponds to perturbations of
period P times the period of the underlying solution. (a) Stokeswave solution, (k, b) = (0, 0.08); (b) Stokeswave solution, (k, b) = (0, 0.9); (c) dn solution, (k, b) = (0.9, 1);
(d) cn solution, (k, b) = (0.65, 0.4225); (e) cn solution, (k, b) = (0.95, 0.9025); (f) triple-figure 8 solution, (k, b) = (0.89, 0.84); (g) non-self-intersecting butterfly solution,
(k, b) = (0.9, 0.95); (h) self-intersecting butterfly solution, (k, b) = (0.9, 0.85).
In what follows we discuss the stability of solutions with
respect to perturbations of integer multiples of their fundamental
periods, so-called subharmonic perturbations [15]. The expression
(114) gives an easyway to do this. Specifically, from (110)we know
which values of µ correspond to perturbations of what type. For
stability, we need all spectral elements associated with a given µ
value to have zero real part. In Fig. 10 we plot the real part of σL as
a function ofµT (k) using (61), (63), and (114). We rescaleµ by the
fundamental period T (k) for consistency in our figures. Specifically,

µT (k) =
2πm
P
,

corresponds to perturbations of PT (k) for any integer n. In what
follows, we omit σL ∩ iR.
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9.1. Stokes wave case

We begin with the spectrum for Stokes waves (see Fig. 10(a),
(b)). After simplification,

µT (k) = −2πsgn(s)

b − s2 + 2πn, (116)

Re(λ) = ±2

bs2 − s4, (117)

for s ∈ [−
√
b,

√
b] and n ∈ Z. Qualitatively, for any value of n, the

parametric plot of Re (σL) as a function ofµT (k) looks like a figure
8 on its side. Specifically, The figure 8 is centered at (2πn, 0) and
extends left and right to (2πn ± 2π

√
b, 0), with non-zero values

in between, see Fig. 10(a), (b). This leads to the following theorem:

Theorem 9.1. For any positive integer P, Stokes wave solutions
to (1)with b ≤ 1/P2 are stable with respect to perturbations of period
Pπ .

Proof. First, T (k) = T (0) = π . Let P ∈ N0. For stability with
respect to perturbations of period PT (k)we need that forµT (k) =
2πm
P , the spectral elements λ ∈ σL have zero real part, i.e., for
µT (k) = 0, 2π

P , . . . ,
2π(P−1)

P , Re(λ) = 0. From (116), µT (k) = 0
only when s = ±

√
b, which corresponds to Re(λ) = 0 from (117).

Thus it suffices to considerµT (k) =
2π
P , . . . ,

2π(P−1)
P . Qualitatively,

we have figure 8s centered at µT (k) = 2πn extending over
[2πn−2π

√
b, 2πn+2π

√
b]. Specifically, as s ranges from−

√
b to

0, µT (k) monotonically increases from 2πn to 2π(n +
√
b). Over

the same range, |Re(λ)| increases from 0 (at s = −
√
b) to b (at

s = −
√
b/2) then decreases back down to 0 (at s = 0) mapping

out the right-half of the figure 8. For s ∈ (0,
√
b), the left-half of

the figure 8 is produced symmetrically. Relevant to the interval
[0, 2π) are the figure 8s centered at 0 and 2π . If the right-most
edge of the figure 8 centered at µT (k) = 0 is less than 2π/P
and the left most edge of the figure 8 centered at µT (k) = 2π
is greater than 2π(P − 1)/P , then the real part of the spectrum at
µT (k) =

2π
P , . . . ,

2π(P−1)
P is zero. These conditions are

2π
√
b ≤

2π
P

and 2π − 2π
√
b ≥

2π(P − 1)
P

. (118)

Simplifying both conditions gives 0 ≤ b ≤ 1/P2, completing the
proof. �

For more intuition about this result, one can examine Fig. 10. In
Fig. 10(a), b = 0.08. Here b < 1/P2 for P = 1, 2, 3 so this Stokes
wave solution is stable with respect to perturbations of periods
π, 2π, 3π . This is readily seen in Fig. 10(a) where the figure 8
centered at the origin extends to µT (k) = ±2π

√
0.08 ≈ 0.567π ,

so Re(λ) = 0 when µT (k) = 0, 2π/3, π, 4π/3, 2π . In Fig. 10(b),
b < 1/P2 only for P = 1, so the Stokes wave solution is only
stable with respect to perturbations of the fundamental period π .
Indeed, the figure 8 centered at the origin extends to µT (k) =

±2π
√
0.9 ≈ 1.90π , so Re(λ) = 0 only for µT (k) = 0.

In order to proceed with results for the dn, cn, and general
nontrivial-phase solutionswe provide the following useful lemma:

Lemma 9.2. For any analytic function f (z) = u(x, y) + iv(x, y),
on a contour where u(x, y) = constant, v(x, y) is strictly monotone,
provided the contour does not traverse a saddle point.

Proof. This is an immediate consequence of the Cauchy–Riemann
relations [35]. �

Thus along contours where Re(I(ζ )) = 0, if there are no saddle
points, then Im(I(ζ )) is monotone. If we fix b and k, using (114) we
see that µ(ζ ) is also monotone along curves with Re(ζ ) = 0.
9.2. dn case

A representative plot of µT (k) vs Re(λ) for a dn solution is
shown in Fig. 10(c). We prove the following theorem:

Theorem 9.3. The dn solutions to (1) are stable with respect to co-
periodic perturbations, but not to subharmonic perturbations.

Proof. It suffices to consider values of ζ in the range given by (93),
as these are the only ζ which correspond to λ with positive real
part. We can limit our study to

ζ ∈


1 −

√
1 − k2

2
i,

1 +
√
1 − k2

2
i


:= [ζb, ζt ] ,

as ζ with negative imaginary part correspond to symmetric values
of µT (k). For ζ = ζt , µT (k) = 0, and Re(λ) = 0. Similarly,
for ζ = ζb, µT (k) = 2π , and Re(λ) = 0. From Lemma 9.2
we know that µT (k) increases monotonically as ζ ranges from
ζt to ζb, and since Re(λ(ζ )) > 0 in that range we have that
some ζ in the range will correspond to a λ with positive real part.
Hence, dn solutions are unstable with respect to perturbations
other than their fundamental period. Additionally, since ζt and ζb
are the only values of ζ corresponding to µT (k) = 2πn we have
that dn solutions are stable with respect to perturbations of their
fundamental period. �

9.3. cn case

Note that T (k) = 4K(k) for cn solutions.

Theorem 9.4. The cn solutions with k < k∗ are stable with respect
to perturbations of period PT (k), if they satisfy the condition:

π − 2iI(−ζt) ≤
2π
P
, (119)

for

ζt =

√
2E(k)− K(k)
2
√
K(k)

. (120)

Proof. We examine ζ ∈ σL that satisfy (73), see Fig. 6(2c). The
figure 8 spectrum is double covered, so without loss of generality,
we consider only values of ζ in the left-half plane. Specifically

we consider values of ζ ranging from ζ− = −

√
1−k2

2 −
k
2 i to

ζ+ =

√
1−k2

2 −
k
2 i passing along the level curve through ζ = −ζt .

At ζ−, µT (k) = 0 and Re(λ) = 0. As ζ moves from ζ− to
−ζt , µT (k) monotonically increases (Lemma 9.2) until it reaches
µtT (k) = π − 2iI(−ζt) at ζ = −ζt . At −ζt , Re(λ) = 0. Note that
we are only considering the lower-left quarter plane. The analysis
for ζ ranging from ζ+ to ζt is symmetric in µT (k).

The only values of ζ which have Re(λ) > 0 are within the
ranges [2πn − µt , 2πn + µt ]. As in Theorem 9.1, relevant to the
interval [0, 2π) are the figure 8s centered at 0 and 2π . For stability
the right-most edge of the figure 8 centered atµT (k) = 0 needs to
be less than 2π/P and the left-most edge of the figure 8 centered
at µT (k) = 2π to be greater than 2π(P − 1)/P . These conditions
are

µt ≤
2π
P

and2π − µt ≥
2π(P − 1)

P
, (121)

which are the same conditions as (119). �

Theorem 9.5. The cn solutions with k > k∗ are stable with respect
to perturbations of period T (k) and period 2T (k).
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Proof. We examine ζ ∈ σL that satisfy (73), see Fig. 6 (2d).
Similar to the proof of Theorem 9.4 we consider ζ in the lower-
left quarter plane only. The parameter ζ ranges from ζ3 to ζt with
ζt ∈ iR. At ζ3, µT (k) = 0, and Re(λ) = 0. As ζ moves to ζt ,
we know that µT (k) increases monotonically (Lemma 9.2) until
it reaches ζt . We do not know explicitly where on the imaginary
axis ζt is, but it satisfies (73). For any ζ on the imaginary axis, we
can compute directly µT (k) = π , Re(λ) = 0. Thus the figure 8
centered at µT (k) = 0 extends outward to µT (k) = π . Similarly,
using symmetries, the figure 8 centered at µT (k) = 2π extends
backward toµT (k) = π , see Fig. 10(e). Both figure 8s have Re(λ) =

0 at µT (k) = 0 and µT (k) = π , so we have stability with respect
to perturbations of periods 2T (k) and T (k). �

9.4. Nontrivial-phases cases

Theorem 9.6. Nontrivial-phase solutions in the figure 8s region and
the triple-figure 8 region are stable with respect to subharmonic
perturbations of period PT (k) if they satisfy the condition

θ(T (k))− 2iI(−ζt) ≤
2π
P
, (122)

with

ζt =


2E(k)− K(k)− (b − k2)K(k)

2
√
K(k)

. (123)

Proof. We examine ζ ∈ σL which satisfy (73), see Fig. 7(2a),
(2c). Recall that ζi corresponds to the root of Ω2(ζ ) in the ith
quadrant from (88). The ζ spectrum has three components which
we examine separately:

1. ζ strictly real, corresponding to σL ∩ iR.
ζ strictly real corresponds to λ strictly imaginary, so these
values do not need to be examined further.

2. ζ ranging between ζ3 and ζ2, corresponding to the outside figure
8.
For ζ ranging between ζ3 and ζ2 we follow identical steps from
the proof of Theorem 9.4. Taking the right-most edge of the
outside figure 8 centered atµT (k) = 0 to be less than 2π/P and
the left-most edge of the outside figure 8 centered at µT (k) =

2π to be greater than 2π(P − 1)/P , we arrive at analogous
conditions to (121) which reduce to (123) as desired. Note that
we have shown only that (123) is a necessary condition.

3. ζ ranging between ζ4 and ζ1, corresponding to the enclosed figure
8 or the triple-figure 8.
For ζ ranging between ζ4 and ζ1, we know from Section 8 that
this corresponds to the enclosed figure 8 (or triple-figure 8).
Specifically, the top of this figure 8 (or triple-figure 8) is lower
than the top of the other figure 8. It suffices to show that the
extent of this figure 8 (or triple-figure 8) in µT (k) is less than
that of the larger figure 8. Indeed, if the enclosed figure 8 (or
triple-figure 8) extends less in µT (k) than the larger figure 8
does, then the stability bounds above are sufficient.
It suffices to show that −2iI(ζt) < −2iI(−ζt). Let g(ζ ) =

−2iI(ζ ). We know g(ζ ) is a real-valued function with real
coefficients for ζ ∈ R. Furthermore, from (79),

dg(ζ )
dζ

=
2E(k)−


1 + b − k2 + 4ζ 2


K(k)

iΩ(ζ )
. (124)

The only roots of dg(ζ )/dζ are ζ = ±ζt . By checking
d2g(ζ )/dζ 2 we see that g(ζt) is a local minimum and g(−ζt) is
a local maximum. Since there are no other extrema, g(−ζt) >
g(ζt) and (123) is a sufficient condition. �
Fig. 11. A plot of parameter space showing the spectral stability of solutions
with respect to various subharmonic perturbations. Lightest blue or darker (entire
region): solutions stable with respect to perturbations of the fundamental period.
Second lightest blue or darker: solutions stable with respect to perturbations of
two times the fundamental period. Third lightest blue or darker: solutions stable
with respect to perturbations of three times the fundamental period etc. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Theorem 9.7. Nontrivial-phase solutions of butterfly type are stable
with respect to perturbations of the fundamental period.

Proof. We examine ζ ∈ σL satisfying (73), see Fig. 7(2b), (2d). The
ζ spectrum consists of three components:

1. ζ strictly real, corresponding to σL ⊂ iR.
2. ζ ranging between ζ3 and ζ4, corresponding to two of the

butterfly wings.
3. ζ ranging between ζ2 and ζ1, corresponding to the other two

butterfly wings.

Case 1 consists only of values of ζ corresponding to λ with zero
real part so it need not be examined. Cases 2 and 3 are symmetric
in µ so it suffices to look at case 2. With ζ = ζ3, µT (k) = 0 with
Re(λ) = 0. Then, from Lemma 9.2, µT (k) increases monotonically
as ζ varies from ζ3 to ζ4. At ζ = ζ4, µT (k) = 2π , with Re(λ) = 0.
Because of the monotone increase in µT (k), ζ3 and ζ4 are the only
possible values of ζ which correspond to µT (k) = 0, 2π . Since
Re(λ) = 0 for both of these values of ζ , we have stability for
perturbations of period T (k) as desired. �

The above results are summarized in Fig. 11 where we
plot the different regions of parameter space corresponding to
spectral stability with respect to different classes of subharmonic
perturbations.

10. Approximating the greatest real part of the spectrum

In this section we find an approximation to the value of the
spectral element σmax ∈ σL with greatest real part. This value
is significant because it corresponds to the eigenfunction with
the fastest growth rate. For the Stokes wave case and for the dn
solution case Re(σmax) is known explicitly, so in this section we
focus on approximating σmax for the cn solutions and nontrivial-
phase solutions. In the Stokes wave case Re(σmax) = b. This is seen
from maximizing the real component of (92). For the dn solution
case, from (94) we know that the spectrum extends to Re(σmax) =
√
1 − k2.
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From (101) and (102) we have an expression for the slope at
any point in the set SΩ . σmax occurs when the slope at that point is
infinity, i.e., when the denominator in (101) is identically zero:

dΩr

dζr
+

dΩr

dζi

dζi
dζr

= 0. (125)

To simplify this equationwe note that the expressions for dΩr/dζr
and dΩrdζi are found using (83) by substituting inΩ = Ωr + iΩi
and ζ = ζr+iζi, taking real and imaginary parts, anddifferentiating
with respect to ζr and ζi. For the expression dζi/dζr we use (102)
and the fact that

dRe(I)
dζr

= Re

dI
dζ


, (126)

dRe(I)
dζi

= −Im

dI
dζ


, (127)

from Section 8. Using (79), we find the real and imaginary
components of dI/dζ as

Re

dI
dζ


=

2E(k)Ωr + K(k)

−8ζiζrΩi −


1 + b − k2 + 4ζ 2r − 4ζ 2i


Ωr


2

Ω2

i +Ω2
r

 , (128)

Im

dI
dζ


= −

2E(k)Ωi − K(k)

−8ζiζrΩr +


1 + b − k2 + 4ζ 2r − 4ζ 2i


Ωi


2

Ω2

i +Ω2
r

 .

(129)

Using (83), (128), and (129) we simplify (125):
−1 + 3b2 + k4 + 16ζ 4

i − 2b

−1 + 2k2 + 8ζ 2

i


+ 8cζr + 16ζ 2

r + 32ζ 2
i ζ

2
r + 16ζ 4

r + 8k2(ζ 2
i − ζ 2

r )

K(k)

+

2 − 6b + 2k2 + 8ζ 2

i − 24ζ 2
r


E(k) = 0. (130)

This equation gives a condition on the real and imaginary parts
of ζ . By construction, if (73) and (130) are satisfied, then ζ ∈ σL
maps to σmax. We denote such ζ as ζmax. We note that in the trivial-
phase case, (130) is an equation for a conic section in the variables
ζ 2
r and ζ 2

i . In Fig. 12 we plot values of (ζr , ζi) which satisfy (130)
along with values of ζ = ζr + iζi satisfying (73). The intersection
of these curves gives ζmax.

By simultaneously solving (130) and (73) and substituting into
(61) and (63) we have an exact expression for σmax. For the rest of
this section we generate series expansions for (73) and show that
even using low-order approximations we are able to reproduce
much of the spectrum, including σmax.

From Section 8, we know a few points of σL explicitly. Because
the functions we are working with are analytic, we can perform
series expansions around these explicitly known points. The points
we have explicit expressions for are ζc , i.e., the ζ corresponding to
λ = 0, and ζt , the ζ corresponding to the tops of the figure 8 or
triple-figure 8. In what follows we outline a procedure for finding
an approximation to points in SΩ around these explicitly known
points. These expansions provide approximations to the set SΩ , and
using the mapping (61) and (63), results in approximations to the
σL spectrum.

Procedure for finding a series approximation to ζ satisfy-
ing (73) around ζc :

1. Expand the expression inside the real part of (73) around ζc in
a Puiseux series [36] to give:

Re

(a1 + b1i)(ζ − ζc)

1/2
+ (a2 + b2i)(ζ − ζc)

3/2

+ (a3 + b3i)(ζ − ζc)
5/2

+ . . .


= 0, (131)
where ai, bi ∈ R are the real and imaginary parts of the
coefficients of the terms in the Puiseux series.

2. Let

δ = δr + iδi = (ζ − ζc)
1/2, (132)

for δr , δi ∈ R. Then (131) becomes

Re

(a1 + b1i)δ + (a2 + b2i)δ3

+ (a3 + b3i)δ5 + O(δ7)


= 0. (133)

3. Near ζ = ζc, δ is small. Let δ = δr(δi)+ iδi, with

δr(δi) = δ1δi + δ3δ
3
i + δ5δ

5
i + O(δ7i ). (134)

4. Substituting (134) into (133) and simplifying the expression
on the left-hand side, we equate powers of δi to solve for
δ1, δ3, δ5, . . . sequentially. We find

δ1 =
b1
a1
, (135)

δ3 =
3a21a3b1 − a3b31 − a31b3 + 3a1b21b3

a41
, (136)

δ5 =
1
a71


a61b5 − a51(3a3b3 + 5a5b1)

+ a41b1

9a23 − 10b1b5 − 6b23


+ 10a31b

2
1(3a3b3 + a5b1)

+ a21b
3
1


−12a23 + 5b1b5 + 18b23


− a1b41(15a3b3 + a5b1)+ 3a23b

5
1


,

. . . .

(137)

5. Solving (132) for ζ results in an approximation for ζ as a
function of δi in terms of its real and imaginary parts:

ζ = δr(δi)
2
− δ2i + Re(ζc)+ (2δr(δi)δi + Im(ζc)) i. (138)

We call (138) an nth-order expansion where n is the largest
power of ζi from (134) included. For instance, a third-order
expansion for ζ is

ζ =

δ1δi + δ3δ

3
i

2
− δ2i + Re(ζc)

+

2

δ1δi + δ3δ

3
i


δi + Im(ζc)


i. (139)

First- and third-order approximations to (73) around ζc are
shown in Fig. 13 for the two types of cn solutions. Although the
expansion is only guaranteed to be valid around ζc , the first-order
expansion approximates σL well up to (and past) the point where
σmax occurs. With this in mind, we present Fig. 14, comparing
the exact value of the greatest real part of the spectrum and the
approximate value. From this figure, generally the approximation
performs better in the piercing case (k < k∗) than in the
non-piercing case (k > k∗). Also, with just the first-order
approximation we get a maximum relative error of less than 18%.
For third-order, themaximum relative error is less than 1%, and for
fifth-order this decreases to less than 0.1%.

Using the approximations to σmax we can obtain an approxima-
tion to the eigenfunction profile with the largest growth rate. This
is achieved by substituting ζmax into (62) using (56) and (57). The
approximation for ζmax does not exactly satisfy (58) and in order to
find a bounded eigenfunctionwe subtract the left-hand side of (58)
from the exponent in (57). Indeed,with ζmax in Fig. 13 the left-hand
side of (58) is small in magnitude. For example, when k = 0.65,
the left-hand side of (58) is 0.0014 for the first-order approxima-
tion and 0.00034 for the third-order approximation. These values
should be compared with 0.22 when ζ is chosen to correspond to
a point in the middle of the figure 8.
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Fig. 12. The σL spectrum (black) along with the curve corresponding to greatest real part of the σL spectrum (orange) satisfying (130). (a) Stokes wave solution,
(k, b) = (0, 0.08); (b) dn solution, (k, b) = (0.9, 1); (c) cn solution with piercing, (k, b) = (0.65, 0.4225); (d) cn solution without piercing, (k, b) = (0.95, 0.9025);
(e) double-figure 8 solution, (k, b) = (0.65, 0.423); (f) non-self-intersecting butterfly solution, (k, b) = (0.9, 0.95); (g) triple-figure 8 solution, (k, b) = (0.89, 0.84); (h)
self-intersecting butterfly solution, (k, b) = (0.9, 0.85).
Fig. 13. Approximating the σL spectrum for cn solutions. Shown are the σL spectrum (black solid curve), the curve corresponding to greatest real part of the σL spectrum
(orange solid curve), ζmax at the intersection point of the black and orange curves, the first-order approximation to σL around ζ1 (light-blue dotted curve), third-order
approximation to σL around ζ1 (dark-blue dotted curve). (a) A cn solution with piercing, (k, b) = (0.65, 0.4225); (b) cn solution without piercing, (k, b) = (0.95, 0.9025).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
In addition to expanding around ζc , we can also expand (73)
around ζ = ζt , corresponding to the top of the figure 8 or triple-
figure 8. Note that we cannot do so if we are in the butterfly region
or in the cn region without piercing, thus we require

b + 1 − k2 −
2E(k)
K(k)

< 0. (140)

Sincewe are expanding around a pointwhere the expression inside
the real part of (73) is analytic, we can use a Taylor series instead
of a Puiseux series which vastly simplifies the analysis.

Procedure for finding an approximation to ζ satisfying (73) around
ζt :
1. Expand the expression inside the real part of (73) around ζt in
a Taylor series to give

Re

(a1 + b1i)(ζ − ζt)+ (a2 + b2i)(ζ − ζt)

2

+ (a3 + b3i)(ζ − ζt)
3
+ . . .


= 0, (141)

where ai, bi ∈ R are the real and imaginary parts of the
coefficients of the terms in the Taylor series. In fact, all ai’s are
identically zero, and b1 = 0 so that

Re

b2i(ζ − ζt)

2
+ b3i(ζ − ζt)

3
+ . . .


= 0. (142)

2. Let

δ = δr + iδi = ζ − ζt , (143)



18 B. Deconinck, B.L. Segal / Physica D 346 (2017) 1–19
Fig. 14. (a) Comparison of the exact value for the greatest real part of σL for cn solutions (black solid curve) with a first-order approximation (dark blue dotted curve) and
a third-order approximation (light blue dotted curve). (b) The relative error of the approximations: |(approximation-exact)/exact|. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. Approximating σL for cn solutions around the top of the figure 8. Shown are σL (black solid curve), the curve corresponding to the greatest real part of σL (orange
solid curve), the first-order approximation to σL around ζ1 (lightest-blue dotted curve), third-order approximation to σL around ζ1 (light-blue dotted curve), fifth-order
approximation to σL around ζ1 (dark-blue dotted curve), seventh-order approximation to σL around ζ1 (darkest-blue dotted curve). (a) A cn solution, (k, b) = (0.8, 0.64);
(b) cn solution, (k, b) = (0.85, 0.7225); (c) cn solution, (k, b) = (0.88, 0.7744); (d) cn solution, (k, b) = (0.9, 0.81). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
for δr , δi ∈ R. Then (142) becomes

Re

b2iδ2 + b3iδ3 + O(δ4)


= 0. (144)

3. Near ζ = ζc, δ is small. Let δ = δr(δi)+ δi, with

δr(δi) = δ1δi + δ2δ
2
i + δ3δ

3
i + O(δ4i ). (145)

4. Substituting (145) into (144) and simplifying the expression
on the left-hand side, we equate powers of δi to solve for
δ1, δ2, δ3, . . . .We find that δi = 0 for i odd and Eqs. (146)–(148)
are given in Box V.

5. Solving (143) for ζ we obtain an approximation for ζ as a
function of δi in terms of its real and imaginary parts:

ζ = (δr(δi)+ ζt)+ iδi. (149)

As before, call (149) an nth-order expansion where n is the
largest power of ζi from (145) included. For instance, a fourth-
order approximation for ζ is

ζ =

δ2δ

2
i + δ4δ

4
i + ζt


+ iδi. (150)

The fourth-, sixth-, eighth-, and tenth-order approximations to
(73) are shown in Fig. 15 for piercing cn solutions as k approaches
k∗. We see that these approximations quickly diverge from the σL
spectrum as k approaches k∗. The results here are shown for cn
solutions but hold in the nontrivial-phase case as well. For small
values of k and b satisfying (140) we are able to approximate σmax
well using this Taylor series approach, but as the left-hand side of
(140) approaches 0 this approximation fails. In general, the Puiseux
expansions around ζc serve as more robust approximations than
the Taylor expansions around ζt .

11. Conclusion

In this paper, we have taken the next step in an ongoing
research program of analyzing the stability of periodic solutions
of integrable equations. Our methods rely on the squared
eigenfunction connection [19] and the existence of an infinite
sequence of conserved quantities, as described below. Thus far, the
following results have been obtained:
• The KdV equation. In [16], the squared eigenfunction connec-

tion was used to establish the spectral stability of the periodic
traveling waves of the KdV equation with respect to pertur-
bations that are bounded on the whole line (periodic, quasi-
periodic, or linear superpositions of such). This result was built
in [37] to establish the orbital stability of these solutions with
respect to subharmonic perturbations of any period, using an
extra conserved quantity as an appropriate Lyapunov function.
Thismethod, employing all conserved quantities, was extended
to establish the orbital stability of the periodic finite-gap solu-
tions of the equation in [18], again with respect to subharmonic
perturbations.

• The defocusing mKdV equation. In [18], the method of [16]
was adapted to the defocusing modified KdV equation to prove
the spectral stability of the periodic traveling waves with
respect to bounded perturbations.

• The defocusing NLS equation. In [17], the squared eigenfunc-
tion connection was employed to show the spectral stability
of the stationary solutions of the defocusing NLS equation. Or-
bital stability with respect to subharmonic perturbations is also
demonstrated in [17], again requires the use of an additional
conserved quantity.

• The focusing NLS equation. In this paper, the method
of [16,17] is used to examine the stability spectrum of the
stationary solutions of the focusing NLS equation. Because
the underlying Lax pair is not self adjoint, the application
of the method does not simplify as it does for the above
equations. Unbridled use of elliptic function identities allows
for the explicit determination of the spectrum, demonstrating
spectral instability for all stationary (non-soliton) solutions.
We demonstrate that the parameter space for the stationary
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6)

7)

8)
δ2 =
b3
2b2

, (14

δ4 =
−3b33 + 8b2b3b4 − 4b22b5

8b32
, (14

δ6 =
9b53 − 40b2b4b33 + 32b22b5b

2
3 + 32b22b

2
4b3 − 24b32b6b3 − 16b32b4b5 + 8b2r4b7

16b52
, (14

. . .

Box V.
solution separates in different regions where the topology of
the spectrum is different. An additional subdivision of this
parameter space is found when considering the stability of
the solutions with respect to subharmonic perturbations of a
specific period, leading to the conclusion of spectral stability
of some solutions with respect to some smaller classes of
physically relevant perturbations.

Many directions for future research remain. We are currently
applying the same methods to the Sine-Gordon equation [38],
recovering and extending recent results by Jones,Marangell, Miller
and Plaza [39]. Building on the results found in thismanuscript, we
are extending the spectral stability results of Section 9 to orbital
stability [40].
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