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a b s t r a c t

Explicit parametric solutions are found for a nonlinear long-wave model describing steady surface waves
propagating on an inviscid fluid of finite depth in the presence of a linear shear current. The exact
solutions, along with an explicit parametric form of the pressure and streamfunction give a complete
description of the shape of the free surface and the flow in the bulk of the fluid. The explicit solutions
are compared to numerical approximations previously given in Ali and Kalisch (2013), and to numerical
approximations of solutions of the full Euler equations in the same situation Teles da Silva and Peregrine
(1988). These comparisons show that the long-wave model yields a fairly accurate approximation of the
surface profile as given by the Euler equations up to moderate waveheights. The fluid pressure and the
flow underneath the surface are also investigated, and it is found that the long-wavemodel admits critical
layer recirculating flow and non-monotone pressure profiles similar to the flow features of the solutions
of the full Euler equations.

© 2017 Elsevier Masson SAS. All rights reserved.
1. Introduction

Background vorticity can have a significant effect on the prop-
erties of waves at the surface of a fluid [1–10]. In particular, in the
seminal paper of Teles da Silva and Peregrine [11], it was found
that the combination of strong background vorticity and large am-
plitude leads to a number of unusual wave shapes, such as narrow
and peaked waves and overhanging bulbous waves. In the present
contribution, we continue the study of a simplified model equa-
tionwhich admits some of the features found in [11]. The equation,
which has its origins in early work of Benjamin [12], has the form
Q +

ω0

2
u2
2 du

dx

2

= −3

ω2

0

12
u4

+ gu3
− (2R − ω0Q )u2

+ 2Su − Q 2

, (1)

where we denote the volume flux per unit span by Q , the mo-
mentum flux per unit span and unit density corrected for pressure
force by S, and the energy density per unit span by R. The gravita-
tional acceleration is g and the constant vorticity is −ω0. The total
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flow depth as measured from the free surface to the rigid bottom
is given by the function u(x).

Eq. (1) was recently studied in [13]. It was found that solutions
of this equation exhibit similar properties as solutions of the
full Euler equations displayed in [11]. In particular, in [13] an
expression for the pressure was developed, and it was shown that
the pressure may become non-monotone in the case of strong
background vorticity. Indeed, it was shown in [13] that if |ω0|

is big enough, the maximum fluid pressure at the bed is not
located under thewavecrest. Such behavior is usually only found in
transient problems (cf. [14]). Moreover in some cases, the pressure
near the crest of the wave may be below atmospheric pressure. In
contrast, in an irrotational flow beneath a traveling surface water
wave, the pressure is monotone with depth, and no overhanging
profiles are possible [15,16].

The purpose of the present work is two-fold. First, we develop
a method by which Eq. (1) can be solved exactly. The resulting
solutions are compared to the numerical approximations found
in [13] and to some of the solutions of the full Euler equations
from [11]. Secondly, more features of the solutions of (1) are
discussed. Using a similar analysis as in [13], the streamfunction
is constructed, and it is found that solutions of (1) may feature
recirculating flow and pressure inversion. These features may
have an impact on the study of sediment resuspension. Indeed,
while it is generally accepted that the main mechanism for
sediment resuspension is turbulence due to flow separation in the
presence of strong viscous shear stresses [17–19], the strongly
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non-monotone pressure profiles exhibited by the solutions of
(1) may represent a more fundamental mechanism for particle
suspension than the viscous theory. In particular, in Fig. 13 it can be
seen that very strong shear allows for near atmospheric pressure
close to the bed, and there are regions of high pressure situated
below regions of lower pressure leading to an upwardly directed
force in the fluid.

The geometric setup of the problem is explained as follows.
Consider a background shear flow U0 = ω0z, where ω can be
positive or negative (cf. Fig. 1). Superimposed on this background
flow is wave motion at the surface of the fluid. As observed by a
number of authors [12,11,9], a linear shear current can be taken
as a first approximation of more realistic shear flows with more
complex structures.

If it is assumed that the free surface describes a steady
periodic oscillatory pattern, then the flow underneath the free
surface can be uniquely determined [20–22]. In the presence
of vorticity, uniqueness holds under certain conditions, but in
some cases, there is loss of uniqueness, and this allows the
existence of critical layers in the fluid [23]. For the purpose
of studying periodic traveling waves, one may use a reference
frame moving with the wave. This change of reference frame
leads to a stationary problem in the fundamental domain of one
wavelength. The incompressibility guarantees the existence of the
streamfunction ψ and if constant vorticity ω = −ω0 is stipulated,
the streamfunction satisfies the Poisson equation

1ψ = ψxx + ψzz = ω0, in 0 < z < η(x). (2)

As explained in [24,25], the three parametersQ , S and R are defined
as follows. If ψ = 0 on the streamline along the flat bottom, then
Q denotes the total volume flux per unit width given by

Q =

 η

0
ψzdz. (3)

Thus Q is the value of the streamfunctionψ at the free surface. The
flow force per unit width S is defined by

S =

 η

0


P
ρ

+ ψ2
z


dz, (4)

and the energy per unit mass is given by

R =
1
2
ψ2

z +
1
2
ψ2

x + gη on z = η(x). (5)

Finally, the pressure can be expressed as

P = ρ

R − gz −

1
2
(ψ2

x + ψ2
z )+ ω0ψ − ω0Q


. (6)

It is well known that the quantities Q and S do not depend on
the value of x [24]. Using the fact that S is a constant, the derivation
of the model equation (1) can be effected by assuming that the
waves are long, scaling z by the undisturbed depth h0, x by a typical
wavelength L, and expanding in the small parameter β = h2

0/L
2.

This yields (1) as an approximate model equation describing the
shape of the free surface. In order to distinguish from the free
surface η in the full Euler description, we call the unknown of
Eq. (1) u which is an approximation of η. The derivation of (1)
was given in [24], where it was shown that (1) is expected to be
valid as an approximate model equation describing waves on the
surface of the shear flow if the wavelength is long compared to
the undisturbed depth of the fluid. On the other hand, a detailed
analysis of the derivation explained in [24] shows that there are
no assumptions on the amplitude of the waves. Thus at least
formally, the model (1) can be expected to describe waves of large
amplitude.
2. Explicit solutions

In order to obtain solutions of (1) given in explicit form, we
apply the change of variables
dy
ds

=
du
dx


Q +

ω0

2
u2

, y(s) = u(x).

This gives us a new equation for y(s) in the form
dy
ds

2

= −3

ω2

0

12
y4 + gy3 − (2R − ω0Q )y2 + 2Sy − Q 2


, (7)

and the relation
ds
dx

=
1

Q + y2ω0/2
. (8)

Integrating (8) we have

x(s) =

 s 
Q +

ω0

2
y2

dξ − x1 (9)

where x1 is a constant of integration, written explicitly for
convenience. We want to solve (7) for y(s) and plug our
solution into (9). We notice that in the variables y and dy

ds the
equation describes an elliptic curve of genus one [26]. Hermite’s
Theorem [27, p. 394] states that for a uniform solution to exist
we need


ds to be an abelian integral of the first kind. This

condition is indeed satisfied andweproceedwith using a birational
transformation to put (7) in the standard Weierstraß form

dy0
dx0

2

= 4y30 − g2y0 − g3, (10)

where the transformation is given in Box I, and g2 and g3 are the
lattice invariants

g2 = −768QRω0 + 768R2
− 1152Sg,

g3 = 2048Q 3ω3
0 − 6144Q 2Rω2

0 − 6912Q 2g2
+ 6144QR2ω0

− 4608QSgω0 + 2034S2ω2
0 − 4096R3

+ 9216RSg.

It is well known that the solution to (10) is y0(x0) = ℘(x0 +

c0; g2, g3), where ℘ is the Weierstraß P function and c0 is an
arbitrary constant [28,26]. We invert the birational transformation
to determine the exact solution to (7) as

y(s) =
A + B℘ ′((s + c0)/4; g2, g3)+ C℘((s + c0)/4; g2, g3)
℘2((s + c0)/4; g2, g3)+ D℘((s + c0)/4; g2, g3)+ E

,

with

A = −288Q 2g − 96Qω0S + 192RS, B =
√
12Q ,

C = −24S,
D = 8Qω0 − 16R, E = 64Q 2ω2

0 − 64QRω0 + 64R2.

This gives u(x(s)) in the form

u(x(s))

=
A + B℘ ′((s + c0)/4; g2, g3)+ C℘((s + c0)/4; g2, g3)
℘2((s + c0)/4; g2, g3)+ D℘((s + c0)/4; g2, g3)+ E

, (12)

as a function of the parameter s. If we express x(s) as a function of
s, then we have a parametric representation for u(x), the surface
elevation. From (9) we have

x(s) = Qs − x1 +
ω0

2

 s

y2(ξ)dξ . (13)

Expanding and simplifying y(s)2 gives

y2 =
4B℘3

+ C2℘2
+ (2AC − B2g2)℘ + (A2

− B2g3)
(℘2 + D℘ + E)2

+
2AB − 2BC℘

(℘2 + D℘ + E)2
℘ ′, (14)
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Fig. 1. This figure shows the background shear flow U0 = ω0z. In the figure, ω0 is positive, and the waves which are superposed onto this background current propagate to
the left.
1)
x0 = −

24

−2

√
12Q 2y2ω0 −

√
12Qgy3 + 4

√
12QRy2 + 4

√
12Q 3

− 6
√
12QSy + 8Q 2 dy

ds − 4 dy
ds Sy


y3

,

y0 =

4

−Qy2ω0 + 2Ry2 +

dy
ds

√
12Q + 6Q 2

− 6Sy


y2
, (1

Box I.
making use of the shorthand ℘ = ℘((s + c0)/4; g2, g3) and ℘ ′
=

℘ ′((s+c0)/4; g2, g3). Plugging (14) into (13) and integrating gives

x(s) = Qs − x1 + ω0B

8(2A − CD) arctan


D+2℘
√

−D2+4E


(−D2 + 4E)3/2

+
−4AD + 8CE + (−8A + 4CD)℘
(D2 − 4E)(℘2 + D℘ + E)


+
ω0

2

 s 4B℘3
+ C2℘2

+ (2AC − B2g2)℘ + (A2
− B2g3)

(℘2 + D℘ + E)2
dξ .

(15)

This integral can be evaluated exactly, and is then written as

x(s) = Q (s + c0)− x2 + ω0B

×

8(2A − CD) arctan


D+2℘
√

−D2+4E


(−D2 + 4E)3/2

+
−4AD + 8CE + (−8A + 4CD)℘
(D2 − 4E)(℘2 + D℘ + E)


+ 2ω0


J(m1, n1)I2((s + c0)/4, α)

+ K(m1, n1)I1((s + c0)/4, α)
+ J(n1,m1)I2((s + c0)/4, β)

+ K(n1,m1)I1((s + c0)/4, β)

, (16)

where I1 and I2 can be found in [28,29], and the functions
J(m1, n1) and K(m1, n1) and the constants m1 and m2 are defined
in Appendix A.

Thus we have x(s) given in (16) and u(x(s)) given in (12) both
as functions of s. This gives a parametric representation of our
solution as a function of s
y = u(x(s)), given in (12),
x = x(s), given in (16). (17)
In [13], it was shown how the pressure in the bulk of the fluid can
be approximated by the expression

P = ρ


R − gz −

1
2


Q
u2

+
ω0

2

2

(z2u′2
+ u2)

+
1
2


ω0

6
u3

−
ω0

2
z2u −

2
3
ω0z3 −

Q
3
u + z2

Q
u


×


2Q

u′2

u3
− u′′


Q
u2

+
ω0

2


. (18)

This leads to a parametric representation of the pressure as a
function of s and the distance from the channel bed z.

Finally, note that an expression for the streamfunction can be
derived using the techniques of [13]. Since this was not done
in [13], the derivation is outlined in Appendix B for the sake of
completeness. The expression for the streamfunction is

ψ =
1
2
z2ω0 + z


Q
u

−
uω0

2
+

Qu′2

3u
−

Qu′′

6
−
ω0u2u′′

12


−

z3

6


2Qu′2

u3
−

Qu′′

u2
−
ω0u′′

2


, (19)

which gives a parametric representation of the streamfunction as
a function of s and z.

3. Matching the explicit solutions to previous works

First, we compare the explicit solutions found here and the
numerical approximations given in [13]. Following the analysis
of [13], we first note that (1) can be written in the form

u′2
=

G(u)
F (u)

. (20)

Letting Z1, Z2, m and M represent the roots of the numerator G on
the right-hand side of (20) we write

G(u) = −3

ω2

0

12
u4

+ gu3
− (2R − ω0Q )u2

+ 2Su − Q 2


=
ω2

0

4
(M − u)(u − m)(u − Z1)(u − Z2). (21)



250 B.L. Segal et al. / European Journal of Mechanics B/Fluids 65 (2017) 247–256
By comparing the coefficients of (21) and assuming that Q , m, and
M are given, the two additional roots Z1 and Z2 are found as (note
that a small typo in [13] has been corrected here)

Z1 =
1
2

−


12
ω2

0
g + (M + m)



−


12
ω2

0
g + (M + m)

2

+
48Q 2

ω2
0mM

 ,
Z2 =

1
2


−


12
ω2

0
g + (M + m)



+

 12
ω2

0
g + (M + m)

2
+

48Q 2

ω2
0mM


.

The total head R and the flow force S are obtained as

R =
ω0Q
2

−
ω2

0

24
(Z1Z2 + mM + (M + m)(Z1 + Z2)) ,

S = −
ω2

0

24
((M + m)Z1Z2 + mM(Z1 + Z2)) .

Following the work in [13] there are two cases depending on the
sign of ω0. If ω0 > 0, then u′2 has no singularities and there is a
smooth periodic solution if Z2 < m < M . If ω0 < 0, then u′2 has
two singularities and the parameter space is more restricted. To
find the conditions for smooth solutions to exist, we let F (u) be
expressed as

F (u) =


Q +

ω0

2
u2
2

=
ω2

0

4
(u − A+)

2(u − A−)
2, (22)

which reveals that the derivative is singular when u takes the
values A+ =


2Q

−ω0
and A− = −


2Q

−ω0
. In the caseω0 < 0, smooth

solutions exist whenM < A+. To better understand this condition,
we introduce the non-dimensional Froude number

F =
ω0M2

2Q
.

Substituting F for ω0 we find four cases:
0 < F : smooth solutions exist if Z2 < m < M,
−1 < F < 0 : smooth solutions exist,
F = −1 : limiting case of smooth

solutions ceasing to exist,
F < −1 : no solutions of (1)

exist, solutions of (7), (9) are multi-valued.

(23)

In [13], only the first two cases above are treated as it is more
challenging to compute cuspedprofiles numerically, and themulti-
valued profiles given by the parametric solution of (7), (8) do not
correspond to solutions of the model equation (1). Belowwe show
one representative example of each of the cases. As in [13], we use
the parameters

g = 9.81; ρ = 1; m = 1.1; Q = 1.2
√
g;

h0 =
3

g−1Q 2; ω0 =

2QF
M2

.
(24)

Additionally, in order to obtain periodic solutions with m <
u(x) < M and with zero imaginary part, we need to set

c0 = 4ω2(g2, g3), (25)

where ω2 is a Weierstraß half period corresponding to the lattice
invariants g2 and g3 with non-zero imaginary part. Note that since
these functions are symmetric under spatial translations (varying
x2) we can shift the waves so they coincide with those in [13].
Indeed this symmetry is inherent to two-dimensional traveling
water waves, even in the presence of underlying critical layers
[30–32].

Figs. 2 and 3 show two curves found in [13], and no visual dif-
ference can be detected between the explicit solutions and the nu-
merical approximations of [13]. We notice that x(s) is a monotone
function of s as F > −1 decreases up until the critical value of
F = −1. Beyond the critical point where F = −1, x(s) is no longer
monotone and as a result the solutions are no longer smooth. Fig. 4
shows the limiting case of a cusped solution, such as also found
for the famous Gerstner wave [33]. Note that the evaluation of the
pressure at the bottom under the wavecrest appears to yield ex-
tremely low and apparently non-physical values. Fig. 5 shows a
looped (or self-intersecting) solution which is allowed in Eqs. (7)
and (9), but not possible in (1). Since it was assumed in the deriva-
tion that the free surface is a single-valued function of x, the solu-
tion shown in Fig. 5 is beyond the physical validity of the equation.

Nextwe investigatewhether the solutions of (1) are close to the
solutions of the full Euler equations with a background shear flow
found in [11]. To facilitate this comparison,we need solutions of (7)
(8) which are 2π periodic in x. First, let us examine the periods of
x(s) and u(s). Let ω1 be the Weierstraß half period corresponding
to the lattice invariants g2 and g3 with non-zero real part. We note
that

u(s + Tu) = u(s),

where

Tu = 8ω1,

denotes the period of u(x), since both ℘((s + c0)/4; g2, g3) and
℘ ′((s + c0)/4; g2, g3) are periodic of period 8ω1. Next we notice
that

x(s + Tu) = x(s)+ Tx,

where

Tx = QTu + 2ω0 [J(m1, n1)J2(α)+ K(m1, n1)J1(α)
+ J(n1,m1)J2(β)+ K(n1,m1)J1(β)] ,

with

J1(γ ) =
1

℘ ′(γ )
(−4ζ (ω1)γ + 4ω1ζ (γ )) ,

and

J2(γ ) =
℘ ′′(γ )

℘ ′3(γ )
4ζ (ω1)γ −

4ζ (ω1)

℘ ′2(γ )

− 2ω1


2℘(γ )
℘ ′2(γ )

+
2℘ ′′(γ )ζ (γ )

℘ ′3(γ )


.

This was determined by noting that

I1(u + 2ω1, γ ) = I1(u, γ )+ J1(γ ),
I2(u + 2ω1, γ ) = I2(u, γ )+ J2(γ ),

which we see from [34]:

ζ (u + 2ω1) = ζ (z)+ 2ζ (ω1),

σ (u + 2ω1) = −e2ζ (ω1)(u+ω1)σ(z).

Now since Tx gives an analytical expression for the wavelength of
the solution, using the scaling symmetry of (1), and rescale x by
2π/Tx and u by 2π/Tx will yield 2π-periodic solutions.

For the sake of completeness, let us also describe how to shift
the wave profiles in the parametric representation in order to
locate the peak of the wave at a given point, say x = 0. To achieve
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a b

Fig. 2. Solution of (7), (8) in the case F = 1.15,M = 1.3, plotted for −
1
2 ≤ s ≤

1
2 . (a) Surface profile u(x) as a function of x. (b) Bottom pressure P(u(x), 0) as a function of x.
a b

Fig. 3. Solution of (7), (8) in the case F = −0.3,M = 1.7, plotted for −
1
2 ≤ s ≤

1
2 . (a) Surface profile u(x) as a function of x. (b) Bottom pressure P(u(x), 0) as a function of x.
this we determine the value of s for which u(s) is at a peak and call
this value Ts. Taking (11) we have

℘((Ts + c0)/4, g2, g3) =
4(−QM2ω0 + 2RM2

+ 6Q 2
− 6SM)

M2
,

where we plugged in y = M and dy/ds = 0 to be at the peak of the
wave. This gives

Ts = 4℘−1

4(−QM2ω0 + 2RM2

+ 6Q 2
− 6SM)

M2
, g2, g3


− c0.

Thus for solutions with the peak at x = 0, we rewrite (17) as
y = u(Tu(s − Ts)), given in (12),
x = x(Tu(s − Ts)), given in (16). (26)

Additionally, we set

x2 = Tu

Q (s̃ + c0)+ ω0B

×

8(2A − CD) arctan


D+2℘((s̃+c0)/4)√
−D2+4E


(−D2 + 4E)3/2

+
−4AD + 8CE + (−8A + 4CD)℘((s̃ + c0)/4)

(D2 − 4E)(℘((s̃ + c0)/4)2 + D℘((s̃ + c0)/4)+ E)


+ 2ω0


J(m1, n1)I2((s̃ + c0)/4, α)

+ K(m1, n1)I1((s̃ + c0)/4, α)
+ J(n1,m1)I2((s̃ + c0)/4, β)

+ K(n1,m1)I1((s̃ + c0)/4, β)
 , (27)
where s̃ = Tu(0− Ts). This x2 is chosen so that when s = 0, x = 0.
Additionally, note that we scale s by Tu. The scaling of s is so that
as s ranges from −1/2 to 1/2, we plot exactly one period of wave-
length Tx.

We compare some wave profiles presented in Fig. 6 of by Teles
da Silva and Peregrine [11] with solutions of same parameters
computed by the current explicit method. Note that in [11], the
parameters g and h0 were normalized, so that we need to choose
g = 1 and h0 = 1. We first present a comparison of a traveling
wave of waveheight H = 1 and vorticity ω0 = −3. In order to
get a good match with the plot from Fig. 6 of [11], we selected
m = 1.44,M = 2.44,Q = 0.09. Fig. 6 shows an explicit solution
of (1) compared to a solution of the full Euler equations shown in
Fig. 6 in [11]. Even though thewaveheight–depth ratio of 1/2 is not
very small, the profiles match fairly closely.

Comparing higher-amplitude waves is more difficult since the
solutions shown in [11] with waveheight larger than 1 are over-
hanging. Setting all parameters correctly yields the comparison
shown in Fig. 7. As can be seen, the wavelength matches, and the
parametric solutions of (7), (9) are also overhanging, but look very
different nevertheless. One may conclude from this last compari-
son, that if solutions of (7), (9) are not single-valued, and therefore
are beyond the validity of (1), theywill not in general represent the
physical reality of the surface-water wave problem.

4. Pressure contours and streamlines

In this section, we explore the flow underneath the surface
as predicted by (1), with the help of the expression (18) for the
pressure and (19) for the streamfunction. We should mention
that there are a number of works which discuss the flow field
underneath surface waves in the context of model equation. In
particular, in [35], the velocity field corresponding to cnoidal
surface profiles is constructed. In [36] the streamlines of the flow
associated to the KdV model are constructed, and in [37], particle
trajectories corresponding to KdV surface profiles are found.While
these works all focus on the irrotational case, the present study
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Fig. 4. Solution of (7), (8) in the limiting case F = −1, withM = 1.7, plotted for −
1
2 ≤ s ≤

1
2 . (a) Surface profile u(x) as a function of x is cusp-shaped. (b) Bottom pressure

appears non-physical.
a b

Fig. 5. Solution of (7), (8) in the case F = −1.1, with M = 1.7. (a) Plotting u(x) as a function of x yields multi-valued profile which is not a solution of (1). (b) Bottom
pressure clearly non-physical.
Fig. 6. Comparing approximate solutions of the full Euler equations (dashed curve)
to exact solutions of (1) (solid curve). The waves have waveheight H = 1 and
wavelength 2π . The problem is normalized with g = 1 and h0 = 1, and the
background vorticity is ω0 = −3.

explicitly incorporates background vorticity into the model as
explained in the derivation of (1).

First, pressure contours and streamlines are reviewed for
positive Froude numbers F . This case corresponds to the case
labeled ‘upstream’ in [11]. As mentioned in that work, it is in
this case that a critical layer is possible. Examining Figs. 8–13,
it appears that as the strength of the vorticity increases, first,
the pressure becomes non-monotone (Fig. 9). In other words, the
pressure strongly departs from hydrostatic pressure, the bottom
pressure ismaximal under the sides of thewave (not the crest), and
this goes hand in handwith the development of closed streamlines
(Fig. 10). For large enough Froude numbers, a critical layer (i.e., a
closed circulation) develops in the interior of the fluid domain
(Fig. 11). In the extreme case of F = 3, pressure inversion occurs as
regions of high pressure are above regions of low pressure in the
fluid column (Fig. 13).

For negative Froude numbers, the flow corresponds to the
downstream case [11]. Figs. 14 and 15 show pressure contours and
streamlines for low values of the Froude number. For larger Froude
numbers, non-monotone pressures develop also in this case, but
no critical layer occurs in the fluid domain. Figs. 16 and 17 show
strongly non-monotone pressures. Apparently, as the shape of the
free surface approaches a cusped profile, non-physical features
appear in the description of the flow.

5. Conclusion

The nonlinear differential equation (1) is known to be a model
for steady surface water waves on a background shear flow. The
equation has been found to admit solutions given explicitly in
terms of a parametric representation featuring the Weierstraß P ,
zeta and sigma functions. This representation is a convenient tool
for obtaining a variety of wave profiles without having to resort to
numerical approximation. In connection with the reconstruction
of the pressure underneath the surface explained in [13], and the
reconstruction of the streamfunction detailed in the Appendix, a
complete description of the flow can be obtained.

The exact solutions of (1) have been compared to wave profiles
obtained from full Euler computations in [11], and fair agreement
was found for regular waves. On the other hand, overhanging
waves were found not to agree with the full Euler solutions.
This is not surprising since the parametric representation enables
the description of multi-valued profiles which transcends the
collection of solutions of (1).

With a view towards the flow in the fluid column below
the wave, a number of wave shapes with increasing strength
of vorticity were exhibited. It was found in the case of steady
waves propagating upstream that the flow underneath the waves
may feature critical layers and non-monotone pressure profiles. In
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Fig. 7. Comparing approximate solutions of the full Euler equations (dashed curve) to exact solutions of (8), (9) (solid curve). The problem is normalized with g = 1, h0 = 1
and wavelength 2π . The background vorticity is ω0 = −3. (a) Waveheight H = 4. (b) Waveheight H = 5.
Fig. 8. Traveling wave withm = 1.1, M = 1.3, and F = 0.2. Left: pressure contours. Right: streamlines.
Fig. 9. Traveling wave withm = 1.1, M = 1.3, and F = 0.9. Left: pressure contours. Right: streamlines.
Fig. 10. Traveling wave withm = 1.1, M = 1.3, and F = 1.2. Left: pressure contours. Right: streamlines.
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Fig. 11. Traveling wave withm = 1.1, M = 1.3, and F = 1.5. Left: pressure contours. Right: streamlines. Pressure highly non-monotone, critical layer appears.
Fig. 12. Traveling wave withm = 1.1, M = 1.3, and F = 2.0. Left: pressure contours. Right: streamlines.
Fig. 13. Traveling wave withm = 1.1, M = 1.3, and F = 3.0. Left: pressure contours. Right: streamlines. Pressure inversion: high pressure above low pressure.
Fig. 14. Traveling wave withm = 1.1, M = 1.3, and F = −0.001. Left: pressure contours. Right: streamlines.
the case of waves propagating downstream, the development of
cusped surface profiles goes hand in handwith unrealistic pressure
profiles apparently conflicting with the long-wave approximation
which is the basis for the model (1). Building on the results of this
paper, future work may focus on detailed comparisons of the fluid
flow as described by themethods of the current work to numerical
approximations of the flow governed by the Euler equations with
background vorticity. Such a study will cast more light on the
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Fig. 15. Traveling wave withm = 1.1, M = 1.3, and F = −0.5. Left: pressure contours. Right: streamlines.
Fig. 16. Traveling wave withm = 1.1, M = 1.3, and F = −0.7. Left: pressure contours. Right: streamlines.
Fig. 17. Traveling wave withm = 1.1, M = 1.3, and F = −0.9. Left: pressure contours. Right: streamlines.
limitations of the current model, especially as regarding the ability
to describe properties of the flow in the bulk of the fluid.
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Appendix A. Exact evaluation of the integral (15)

To evaluate the integral in (15) we let

m1 = −
D
2

−

√
D2 − 4E

2
, and n1 = −

D
2

+

√
D2 − 4E

2
,

denote the roots of ℘2
+ D℘ + E = 0. Letting

α = ℘−1(m1), β = ℘−1(n1), and x1 = −c0Q + x2,
where x2 is another arbitrary constant, we express x(s) as (16),
where the following unnumbered equations given in Box II. ζ is the
Weierstraß zeta function and σ is the Weierstraß sigma function.

Appendix B. Reconstruction of the streamfunction

We want to reconstruct the streamfunction ψ(x, z) using the
solutions u of the differential equation (1). This is done by using
the ansatz

ψ =
1
2
z2ω0 + zf −

1
3!

z3f ′′, (28)

for the streamfunction and the identity

Q =
1
2
u2ω0 + ζ f − u3 1

6
f ′′,

both ofwhich are valid to second order in the long-wave parameter
β = h2

0/λ
2, where h0 is the undisturbed depth of the fluid, and λ

is the wavelength. To obtain an expression for f in terms of ζ , one
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I1(u, γ ) =
1

℘ ′(γ )


log


σ(u − γ )

σ (u + γ )


+ 2uζ (γ )


,

I2(u, γ ) =
℘ ′′(γ )

℘ ′3(γ )
log


σ(u + γ )

σ (u − γ )


−

1
℘ ′2(γ )

(ζ (u + γ )+ ζ (u − γ ))−


2℘(γ )
℘ ′2(γ )

+
2℘ ′′(γ )ζ (γ )

℘ ′3(γ )


u,

J(m1, n1) =
A2

− B2g3 + 2ACm1 − B2g2m1 + C2m2
1 + 4B2m3

1

D2 − 4E
,

K(m1, n1) =
−2A2

+ 2B2g3 − 2ACm1 + B2g2m1 + 4B2m3
1 − 2ACn1 + B2g2n1 − 2C2m1n1 − 12B2m2

1n1

(4E − D2)
3 /2

,

Box II.
has to invert the operator 1 −
1
6ζ

2∂xx, leading to
1 −

1
6
ζ 2∂xx

−1 Q
ζ

−
1
2
ζω0


= f .

In order to bring out the difference in scales between the
undisturbed depth h0 and the wavelength L, we use the scaling
x̃ =

x
L , z̃ =

z
h0
, ζ̃ =

ζ

h0
, ψ̃ =

1
c0h0

ψ, ω̃0 =
h0
c0
ω0, In addition, Q is

scaled as Q̃ =
Q

h0c0
. In non-dimensional variables, the expression

for ψ is

ψ̃ =
1
2
z̃2ω̃0 + z̃ f̃ −

β

3!
z̃3 f̃ ′′

+ O(β2).

The function f̃ is written as

f̃ =


1 +

β

6
ũ2∂2x̃ + O(β2)


Q̃
ũ

−
1
2
ũω0


+ O(β2).

=
Q̃
ũ

−
1
2
ũω̃0 +

β

3
Q
(ũ′)2

ũ
−
β

6
Q ũ′′

−
β

12
ω0ũ2ũ′′

+ O(β2).

The second derivative is

f̃ ′′
= 2

Q̃
ũ3
(ũ′)2 −

Q̃
ũ2

ũ′′
−

1
2
ω0ũ′′

+ O(β).

Putting these together, we find the streamfunction in terms of ũ:

ψ̃ =
1
2
z̃2ω̃0 + z̃


Q̃
ũ

−
1
2
ũω̃0 +

β

3
Q
(ũ′)2

ũ
−
β

6
Q ũ′′

−
β

12
ω0ũ2ũ′′


−
β

3!
z̃3

2
Q
ũ3
(ũ′)2 −

Q
ũ2

ũ′′
−
ω0

2
ũ′′


+ O(β2).
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