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a b s t r a c t

We analyze and compute an extension of a previously developed population model based on the well-
known diffusive logistic equationwith nonlocal interaction, to a system involving competing species. Our
model involves a system of nonlinear integro-differential equations, with the nonlocal interaction charac-
terized by convolution integrals of the population densities against specified kernel functions. The extent
of the nonlocal coupling is characterized by a parameter δ so that when δ → 0 the problem becomes
local. We consider critical points of the model, i.e., spatially homogeneous equilibrium solutions. There is
generally one critical point in the first quadrant (i.e., both population densities positive), denoting coex-
istence of the two species. We show that this solution can be destabilized by the nonlocal coupling and
obtain general conditions for stability of this critical point as a function of δ, the specific kernel function
and parameters of the model. We study the nonlinear behavior of the model and show that the popu-
lations can evolve to localized cells, or islands. We find that the stability transition is supercritical. Near
the stability boundary solutions are small amplitude, nearly sinusoidal oscillations, however, when δ in-
creases large amplitude, nonlinear states are found.We find amultiplicity of stable, steady state patterns.
We further show thatwith a stepfunction kernel function the structure of these islands, a highly nonlinear
phenomenon, can be described analytically. Finally, we analyze the role of the kernel function and show
that for some choices of kernel function the resulting population islands can exhibit tip-splitting behavior
and island amplitude modulation.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In this paper we analyze a model of competing species with
nonlocal interactions. The model developed in [1] is based on the
well-known diffusive logistic model (Fisher equation) and extends
the scalar model to account for two competing species. The non-
local coupling is via convolution integrals with specified kernel
functions.

The scalar model, together with an extension that incorporated
nonlocality in time, was studied in [1,2]. Themodel admits a single
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spatially homogeneous and stationary equilibrium. Conditions for
instability of this equilibrium, in terms of parameters of the prob-
lem, were determined. A discrete model related to the continuous
model was studied in [3] and conditions for instability obtained.

Additional studies of the spatially nonlocal scalar problemwere
described in [4,5] and for a slightly modified scalar problem in [6].
Conditions for instability of homogeneous equilibriawere obtained
in terms of properties of the convolution kernel function. It was
shown that instability required that the Fourier transform of the
kernel function be negative for some band of wavenumbers. Sev-
eral different nonlocal kernel functions were considered and sta-
bility boundaries were determined as functions of the parameters
of the kernel function.

A linear stability analysis for the scalar problem, analogous to
the analysis carried out below for the system, was performed in [7]
for the case when the convolution kernel function was a stepfunc-
tion. The emergence of stationary patterns was then studied via
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numerical simulations and it was shown that in the instability re-
gion, small perturbations evolved to nonlinear stationary states
involving islands of nonzero population, separated by apparent
deadzones where the population was essentially extinct. Prop-
agating wave solutions were also found for asymmetric kernel
functions.

In this paperwe consider amodel of two competing populations
with nonlocal coupling. The extent of the coupling is described by
a parameter δ so that when δ → 0 the coupling becomes local and
the population satisfies a system of Fisher type partial differen-
tial equations for two competing species. We determine critical
points, i.e., spatially homogeneous equilibrium solutions to the lo-
cal problem. The critical point of most interest is one permitting
coexistence of the two species. We consider the case where this
equilibrium is stable for the problem with local coupling, but is
destabilized by the nonlocal coupling i.e., for δ sufficiently large.
We find that this transition is supercritical, as δ increases past the
transition value, small amplitude, nearly sinusoidal oscillations oc-
cur. As δ increases further, we then find, using numerical compu-
tations, nonlinear states consisting of arrays of islands (regions of
nonzero population) and deadzones (regions where the popula-
tions are essentially extinct). We also show how the structure of
the islands can be described analytically when the kernel function
is a stepfunction.

We next describe the model in detail. The model, introduced
in [1], consists of two coupled integro-differential equations,

ut = d1uxx + k1u (1 − a1 φδ ∗ u − b1 φδ ∗ v) − p1u, (1a)
vt = d2vxx + k2v (1 − a2 φδ ∗ u − b2 φδ ∗ v) − p2v. (1b)

Here u and v are the population densities for the two competing
species, t and x denote time and space, respectively, ut and uxx
denote partial derivatives and ∗ denotes spatial convolution, i.e.,

φδ ∗ w(x) =


∞

−∞

φδ(x − y)w(y)dy, (2)

where φδ is a specified function such that
∞

−∞

φδ(y) dy = 1. (3)

We also assume that φδ is an even, nonnegative function with
support in the interval −δ ≤ y ≤ δ. These conditions on φδ imply
thatφδ approaches a δ-function as δ → 0, thus the coupling is local
in this limit.

For each of the two species (u and v), the first term on the right
hand side of (1) describes diffusion, with diffusivities d1 and d2,
respectively. The remainder of the right hand side describes the net
reproductive rate of the species (birth rate minus the death rate).
The terms

k1u − p1u = c1u, k2v − p2v = c2v, (4)

describe the natural net birth rate for the two species. As is typical
for population models based on the logistic equation we always
assume that ci = ki − pi > 0, i = 1, 2, so that the extinction
solution (u = v = 0) is unstable. The quadratic terms

−k1a1uφδ ∗ u = −ã1uφδ ∗ u, (5a)

−k2b2vφδ ∗ v = −b̃2vφδ ∗ v, (5b)

−k1b1uφδ ∗ v = −b̃1uφδ ∗ v, (5c)

−k2a2vφδ ∗ u = −ã2vφδ ∗ u, (5d)

describe the decreased birth rate (or enhanced death rate) due to
intraspecies ((5a), (5b)) and interspecies ((5c) and (5d)) competi-
tion, respectively. In the limit δ → 0 these terms reduce to the
standard quadratic terms of the logistic equation. Using the termi-
nology in (4) and (5) the system (1) can be written in the simpler
form

ut = d1uxx + c1u − u

ã1 φδ ∗ u + b̃1 φδ ∗ v


, (6a)

vt = d2vxx + c2v − v

ã2 φδ ∗ u + b̃2 φδ ∗ v


. (6b)

We note that by suitable rescaling of x, t, u and v, it is possible to
set d1 = c1 = ã1 = b̃1 = 1 (among other possibilities) in (6),
however, we do not do that as it does not result in any significant
simplification in the analysis below.

The biological effect of the nonlocal coupling can be attributed
to the effect of mobility, e.g., [1]. If species compete for a sparse
resource, then due to mobility the inhibiting effect of depletion of
this resource should depend not just on the population at a point
but on some weighted average of the population [1]. A somewhat
different explanation is presented in [7] where it is argued that in
population models the spatial point should refer to an average lo-
cation so that the consumption of resources should be considered
not at a point but over an interval encompassing any given spatial
location. In [7] spatial nonlocality is further related to the concept
of degeneracy, whereby different elements of a system, in this case
population in a neighborhood, serve the same function as popula-
tion at a point in consuming resources. Nonlocality in time is also
possible, due to the finite time for species to move and also due to
time lag in the recovery of depleted resources, [2,7], however, here
wewill follow the assumptions in [1,7] that the temporal response
of the population is sufficiently rapid that only spatial nonlocality
need be considered.

A variety of different kernel functions have been considered in
the literature. The simplest assumption is to consider symmetric,
unweighted averages over a specified interval, i.e., a step function
kernel φδ , e.g., [8,4,5,7]. A function with a continuous, rather than
abrupt, transition fromunity to zero is also possible, but if the tran-
sition is sufficiently rapid, the transition region can be neglected.
It is also possible to consider other kernel functions allowing for
a weighted average in the convolutions. Gaussian based functions
are considered in [4,5] and exponentials considered in [1,6] (see
below). In this paper we consider the stepfunction kernel as well
as other kernels which are qualitatively similar to the cutoff Gaus-
sians considered in [4,5] but are simpler to analyze due to the na-
ture of their Fourier transforms.

In our analysis and computations we consider the problem
where u and v are periodic on the interval−L ≤ x ≤ L. The system
(1) reduces to the scalar equation of [4,7] if, for example, v = 0 or
if the parameters of the u and v equations are equal so that if the
initial conditions for u and v are equal, we will have u = v.

In view of (3) critical points, i.e., spatially uniform stationary
solutions uĎ, vĎ, satisfy the algebraic system of equations

c1uĎ = uĎ(ã1uĎ + b̃1vĎ), (7a)

c2vĎ = vĎ(ã2uĎ + b̃2vĎ). (7b)

It is clear from (7) that (1) admits a solution uĎ = vĎ = 0 cor-
responding to extinction of both species. Furthermore, solutions
corresponding to extinction of one of the species exist,

uĎ =
c1
ã1

, vĎ = 0, uĎ = 0, vĎ =
c2
b̃2

. (8)

We will always take ã1 > 0, ã2 > 0, b̃1 > 0, b̃2 > 0, c1 > 0
and c2 > 0 so that these solutions are physical, i.e., the surviv-
ing species has a positive population density. These conditions
correspond to the standard properties of the logistic equation,
namely linear growth and quadratic decay. We note that in [9]
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the scalar model with local coupling but with a spatially varying
linear growth rate (c1 in our notation) was studied. The spatial
variation connected regions where c1 > 0 (linear growth) with
regions where c1 < 0 (linear decay). Islands of existence and ef-
fective extinction were found analytically via a matched asymp-
totic expansion. Nonlocal coupling, for both the scalar problem and
the system, as we show here, gives similar results but without the
assumption of variable linear birth rate.

The coexistence solution, where both uĎ and vĎ are nonzero,
satisfies

c1 = ã1uĎ + b̃1vĎ,

c2 = ã2uĎ + b̃2vĎ,

so that

uĎ =
−b̃1c2 + b̃2c1

D
, (9a)

vĎ =
ã1c2 − ã2c1

D
, (9b)

where

D = ã1b̃2 − ã2b̃1. (10)

We will always assume that the parameters are such that the co-
existence solution is physical, i.e., uĎ and vĎ in (9) are both positive.
Furthermore, we will assume that (uĎ, vĎ) is stable when the cou-
pling is sufficiently local, i.e., when δ → 0. It can be easily seen
that D > 0 is necessary and sufficient for (uĎ, vĎ) to be stable in
the case of only local coupling. Thus, we consider the case where
(uĎ, vĎ) is destabilized by the nonlocal interactions.

The focus of this paper will be on cellular structures, i.e., islands
of nonzero population, when the coexistence solution is unstable.
Thus, for the remainder of this paper we will use the notation
(uĎ, vĎ) to denote only the coexistence critical point. In Section 2
we perform a linear stability analysis about the coexistence
critical point. We derive general stability criteria in terms of the
parameters and the Fourier transform φ̂δ of the kernel function φδ .
We show that instability cannot occur if φ̂δ > 0 for all k, a result
shown in [5,7] for the scalar problem, e.g., (6a) with v = 0. Thus,
the existence of wavenumber bands where φ̂δ < 0 is necessary
for instability. In particular, instability can occur if φ̂δ is oscillatory
around zero, which can happen if, e.g., φδ has a discontinuity. We
then consider three specific kernel functions with support in the
interval |x| < δ (for simplicity we now omit the subscript δ),
(i) stepfunctions

φstep(x) =
1
2δ

, |x| < δ, φstep(x) = 0, |x| > δ, (11)

(ii) parabolic segments,

φp(x) =
3

4δ2
(δ2

− x2), |x| < δ, φp(x) = 0, |x| > δ, (12)

and (iii) elevated triangles

φet(x) =
αδ − |x|

(2α − 1)δ2
, |x| < δ, φet(x) = 0, |x| > δ, (13)

where α > 1 is a free parameter, and show pattern formation
when the coexistence critical point is unstable, i.e., for sufficiently
large δ.

In Section 3we considerφstep.We showvia numerical computa-
tions that when (uĎ, vĎ) is unstable, the solution with initial con-
ditions consisting of a perturbation of (uĎ, vĎ) evolves to a series
of cells, or islands, separated by deadzones where the populations
are essentially extinct. All islands are identical, for fixed parame-
ters in (1) the size and spacing of the islands depends only on δ and
the initial conditions. Multiple solutions can occur for different ini-
tial conditions. Since all islands are identical, themultiple solutions
are characterized by the amplitudes of the islands and their ex-
tent, i.e., the period of an individual island/deadzone combination.
Despite the intrinsic nonlinearity of these patterns, we are able to
obtain a complete and highly accurate approximation using only
the parameters of the system and the number of islands within
the computational domain (i.e., the period of the island/deadzone
structure). In particular, we show that the structure of the islands
can be approximated by cosine functions. We then obtain a rela-
tionship for the total population within each island that depends
only on parameters of the model. Finally we show that the ampli-
tude and extent of each island can be predicted analytically from
parameters of the system and the period of the island/deadzone
structure.

In Section 4 we consider φp. We show that for some parame-
ter sets φp gives significantly more complex patterns than φstep, in-
cluding patterns involving an amplitude modulation of the islands
and semi-extinction, i.e., extinction of one of the species. In Sec-
tion 5 we consider φet and show that this choice of kernel function
can lead to tip-splitting within the islands. Finally, in Section 6 we
summarize our results.

2. Stability analysis

In this sectionwedetermineneutral stability curves and regions
in wavenumber space where the critical point (uĎ, vĎ) is unstable
as a function of the Fourier transform φ̂ of the kernel function. We
note that it was shown in [1] that for the kernel function

φ(x) =
c
2
exp(−c|x|), (14)

instabilities can occur for certain parameter regimes, although
these regimes and the resulting unstable wavenumber bands were
not determined.

We linearize (1) about the coexistence solution (uĎ, vĎ).
Perturbations ũ, ṽ satisfy the linear integro-differential system

ũt = d1ũxx + (c1 − ã1uĎ − b̃1vĎ)ũ − uĎ(ã1φ ∗ ũ + b̃1φ ∗ ṽ), (15a)

ṽt = d2ṽxx + (c2 − ã2uĎ − b̃2vĎ)ṽ − vĎ(ã2φ ∗ ũ + b̃2φ ∗ ṽ). (15b)

We then Fourier transform in x to obtain (written in matrix/vector
form)

d
dt


û
v̂


= M


û
v̂


, (16)

M =


−ã1uĎφ̂(k) − k2d1 −b̃1uĎφ̂(k)

−ã2vĎφ̂(k) −b̃2vĎφ̂(k) − k2d2


,

where k is the Fourier mode number and û, v̂ and φ̂ denote the
Fourier transforms of ũ, ṽ and φ, respectively. Since we only con-
sider even kernel functions, φ̂(k)will be real for all k. Furthermore,
φ̂(0) = 1 from (3) and for the kernel functions that we consider
φ̂ is a function only of β = kδ, which we also denote by φ̂. Thus,
M = M(β) and linear stability requires that the eigenvalues of M
be either in the left half plane or on the imaginary axis, conditions
equivalent to trace(M) ≤ 0 and det(M) ≥ 0, i.e.,

−(d1 + d2)
β2

δ2
− (ã1uĎ + b̃2vĎ)φ̂ ≤ 0, (17a)

d1d2
β4

δ4
+ (d2ã1uĎ + d1b̃2vĎ)φ̂

β2

δ2
+ uĎvĎDφ̂2

≥ 0. (17b)

If φ̂(β) ≥ 0 for all β , then (uĎ, vĎ) will be stable for all Fourier
modes k, a result also obtained for the scalar problem, e.g., [4,5,7].
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In particular, there will be no instability if the kernel function is a
Gaussian. If φ̂ < 0 over some wavenumber interval then regions
of instability can occur for certain parameter values and for suf-
ficiently large δ, again consistent with results for the scalar equa-
tion. This can happen if, for example, the transform oscillates about
zero as it would if the kernel had a discontinuity. Indeed, in [5] it
is shown that Gaussian kernel functions with a cutoff can lead to
instability for the scalar problem. Since the Fourier transform is a
continuous functional ofφ, oscillatory transforms can occur for ap-
propriately smoothed stepfunction-like kernels. In [4] a family of
smooth approximations to both stepfunctions and Gaussians was
shown to give rise to instabilities for the scalar problem. The C0

function (14) (albeit with a discontinuity in the derivative) was
considered in [1] where it was shown to lead to instabilities. We
show below that a C0 parabolic kernel function (continuous but
with a discontinuity in the derivative) can also allow for instabili-
ties. For (17b) to hold δ must satisfy

1
δ2

≥ −
φ̂(β)

β2
P ≡ S(β), (18)

for all β , where

P =
1

2d1d2


d2ã1uĎ + d1b̃2vĎ

+


(d2ã1uĎ − d1b̃2vĎ)2 + 4d1d2ã2b̃1uĎvĎ


.

If φ̂ is oscillatory then (18) will fail when δ is sufficiently large,
specifically for

1
δ2

< S(β1) (19)

where β1 is the value of β such that φ̂(β)/β2 takes its (necessarily
negative) global minimum (so that S(β) takes a global maximum).

In fact, equality in (19) defines the stability boundary. In order
to see this, note that for δ sufficiently small, both conditions (17a)
and (17b) hold. As δ increases if (17a) fails then (17b) must have
already failed. That is, if there is equality in (17a),

− (d1 + d2)
β2

δ2
− (ã1uĎ + b̃2vĎ)φ̂ = 0, (20)

then necessarily

d1d2
β4

δ4
+ (d2ã1uĎ + d1b̃2vĎ)φ̂

β2

δ2
+ uĎvĎDφ̂2 < 0.

Indeed, we have

0 < D = ã1b̃2 − ã2b̃1 = ã1b̃2


1 −

ã2b̃1
ã1b̃2


< ã1b̃2,

so that it is sufficient to show

d1d2
β4

δ4
+ (d2ã1uĎ + d1b̃2vĎ)φ̂

β2

δ2
+ ã1b̃2uĎvĎφ̂2 < 0. (21)

Let x̃ = δ2φ̂/β2 and set Ã = ã1uĎ and B̃ = b̃2vĎ. Then

− (d1 + d2) − (Ã + B̃)x̃ = 0, (22)

and we will show

d1d2 + (d2Ã + d1B̃)x̃ + ÃB̃x̃2 < 0. (23)

Solving (22) for x̃ we find x̃ = −(d1 + d2)/(Ã + B̃). Plugging this
into (23) we obtain

−


d1B̃ − d2Ã

Ã + B̃

2

< 0. (24)
Fig. 1a. S(β) and 1/δ2 for various δ. Parameters given in (25). If δ = 1.9 coexistence
critical point (uĎ, vĎ) is stable. If δ = 2.8 coexistence critical point (uĎ, vĎ) is
unstable, first band. If δ = 9.0 coexistence critical point (uĎ, vĎ) is unstable, first
and second band.

Thus, Eq. (19) establishes the stability boundary and instability
arises via a real eigenvalue of M crossing from negative to pos-
itive, rather than via a pulsating instability. This result is con-
sistent with our numerical results which show no indication of
oscillatory behavior. Our computations for δ near the transition
point show that the transition is supercritical. Near the stability
boundary only small amplitude, sinusoidal states are found. Fur-
thermore, there is no evidence of bistability of the cellular states
with the critical point when δ is below the stability limit. Whenwe
follow a cellular branch by decreasing δ below the stability bound-
ary, the only steady state solution that we find is the critical point.
When 1/δ2 < S(β) there will be Fourier bands where the ma-
trix M(β) has eigenvalues in the right half plane and the coexis-
tence critical point (uĎ, vĎ) is unstable. These unstable regions are
best visualized in Figs. 1a and 1b where we plot S(β) against β
for the stepfunction and parabolic kernel functions, respectively.
For any δ, instabilities correspond to Fourier bands where S(β) lies
above the horizontal line of height 1/δ2. There may be multiple
bands where this occurs, due to the oscillations of φ̂. In the next
section wewill show that the wavenumbers in the first band accu-
rately predict the size of each island/deadzone region (equivalently
the number of islands within a computational domain of size 2L),
even though the island formation that we describe is an intrinsi-
cally nonlinear phenomenon, we are operating very far from the
stability boundary and the computed patterns are very far from
the sinusoidal patterns predicted from the linear stability analysis.
Thus, while the linear stability analysis does not predict the struc-
ture of the patterns (except near the onset of instability) the un-
stable wavenumbers are inherited by the nonlinear pattern even
far from onset. Such a result is not entirely unexpected, however,
in view of the highly nonlinear nature of the patterns it illustrates
the power of the linear stability analysis. Generally, we do not find
island structures corresponding to bands higher than 1 except in
isolated instances.

3. Stepfunction kernel

In this section we describe solution behavior for the stepfunc-
tion kernel φstep (see (11)). Since this is the only kernel function
used in this section, we use the notation φ rather than φstep. We
consider the following parameter set:

d1 = d2 = 2, c1 = 49, c2 = 9,

ã1 = 250, ã2 = 40, b̃1 = 100, b̃2 = 30, (25)
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Fig. 1b. S(β) and 1/δ2 for various δ. Parameters: d1 = 1, d2 = 2, c1 = 49.9, c2 =

9.99, ã1 = 49, ã2 = 10, b̃1 = 0.1, b̃2 = 0.03. If δ = 3 coexistence critical point
(uĎ, vĎ) is stable. If δ = 12 coexistence critical point (uĎ, vĎ) is unstable, first band.
If δ = 30 coexistence critical point (uĎ, vĎ) is unstable, first and second band.

with periodicity assumed on the interval −L ≤ x ≤ L and L =

1000. We consider a stepfunction kernel function of extent δ (see
(11)) which is the only parameter that we vary. For these param-
eters, the coexistence critical point is (uĎ, vĎ) = (0.1629, 0.0829)
which is stable for δ < 1.8538 (all numbers rounded to 4 decimal
places).

We solve the problem using a Fourier method. The unknowns
are updated in Fourier spacewhere the spatial derivatives and con-
volutions are computed. Nonlinear terms are computed in physi-
cal space and then transformed to Fourier space for the solution
update. We assume symmetry about x = 0. We have tested this
assumption and found that we were unable to find different solu-
tions (except for a translation in x) with the symmetry assumption
relaxed. Solutions are obtained with various initial conditions, in-
cluding both perturbations of (uĎ, vĎ) (both random and determin-
istic) and continuation in δ. We integrate in time until steady state
conditions are obtained. We have only found stationary solutions
for the conditions described here.

In order to set the frame of reference, we first illustrate a sam-
ple solution. In Fig. 2a we plot a steady state solution obtained for
δ = 175. The solution is characterized by eight identical islands of
nonzero population separated by what can be thought of as dead-
zones where the populations are essentially zero. This solution is
characteristic of all solutions we have found for stepfunction ker-
nel functions. As δ is varied, the only difference is in the number of
islands in the computational domain, the amplitude and the extent
of each island. The solution shown in Fig. 2a has 8 islands. For this
value of δ we have also found solutions with 6 and 10 islands for
different initial conditions. In order to clarify the structure of the
island, we plot in Fig. 2b the solution over just one island.

Since these solutions are characteristic of all stationary solu-
tions we have found, we list properties of these island solutions.

1. The islands are symmetric about their midpoint. (We note that
they have the structure of a half cosine curve. This will be
discussed below.)

2. The extent of the islands is slightly different for the two species.
For these parameters the tail of the island includes a small
region where species v survives while species u is essentially
extinct.

3. The islands are surrounded by deadzones where the popula-
tions are vanishingly small. For example, in the deadzone, say
at x = 70 in Fig. 2a, both u and v are of the order of 10−12.
Thus, within each deadzone both species are essentially extinct.
Fig. 2a. Eight island solution for δ = 175. Parameters given in text.

Fig. 2b. Eight island solution for δ = 175. Parameters given in text. Only one island
is shown.

This behavior is somewhat surprising in that it is well known
that the extinction solution for the logistic equation is unstable.
Since each deadzone is of finite extent, infinitely long wave-
length disturbances (mode number k → 0) are not possible.
Large mode number disturbances can be stabilized by diffu-
sion, however, diffusion is not efficient as k decreases, and such
intermediate-scale perturbations can occur when the deadzone
is of large extent, such as in Fig. 2a. In this case, we believe
that the nonlocal interaction via the convolution integrals in (1)
serves to transmit local disturbances away from the deadzone,
thus making deadzones of significant extent possible. The size
of each deadzone decreases as δ decreases, i.e., as the extent
of nonlocality decreases, consistent with this hypothesis. Thus,
as δ decreases, effective extinction is confined to smaller and
smaller zones.

4. The period of the island/deadzone pattern correlates closely
with the unstable wavenumber bands predicted from the linear
stability analysis, even though we consider values of δ far
from the stability boundary and the resulting patterns are
highly nonlinear and very different from the small amplitude
sinusoidal type patterns considered in the stability analysis.

We next discuss point 4. As shown above (see especially Fig. 1a),
instability occurs when the horizontal line y = 1/δ2 is below
segments of the curve S(β). Any interval where this occurs rep-
resents an unstable wavenumber band. The wavenumbers within
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Table 1
Predicted and computed number of islands.

δ I range I for max of band 1 Computed I

5 204–377 260 276
10 101–196 130 152
20 51–99 65 64, 68, 70–72, 76, 80
30 34–66 43 52
50 21–39 26 25, 30
75 14–26 17 18

100 11–19 13 12, 13
125 9–15 10 9, 12
150 7–13 9 8, 9
175 6–11 7 6, 8, 10
200 6–9 7 6–8
250 5–7 5 6
300 4–6 4 4
350 3–5 4 4
400 3–4 3 4

this band provide a mechanism to predict the period of the is-
land/deadzone pair. This prediction can in turn be used to predict
the number of islands within a given computational domain. For
the parameters in (25) this prediction appears to accurately rep-
resent the computed solutions, even though the island/deadzone
combinations that we compute clearly represent a highly nonlin-
ear phenomenon (these solutions cannot in anyway be considered
a small perturbation of the unstable equilibrium point (uĎ, vĎ), and
the solution is far from sinusoidal as would be expected from the
linear stability analysis). For the parameters in (25) (the same pa-
rameters as used in Fig. 1a) we correlate the predicted range of the
number of islands with solutions found numerically in Table 1 (for
simplicity we let I denote the number of islands in the computa-
tional domain −L ≤ x ≤ L, where L = 1000, that we use). We only
tabulate data for crossings of the first band, as we have only been
able to find one stable island/deadzone solution corresponding to
a higher order band.

The data in Table 1 shows a close correlation between the
unstable mode numbers and the computed number of islands that
we find. The correlation degrades as δ decreases, perhaps due to
the fact that there is a wider range of values of I possible. We
emphasize that we expect there to be more stable solutions than
those indicated in Table 1 as we have tested only a limited number
of initial conditions; however, even within this limitation there
appears to be a significant multiplicity of stable island/deadzone
patterns. Finally, for sufficiently small values of δ, the equilibrium
solution (uĎ, vĎ) is stable. Specifically, for δ = 1.8 we were unable
to find any stable solution other than (uĎ, vĎ) consistent with the
linear stability results illustrated in Fig. 1a.

3.1. Analysis of island structure

In this subsection we present an analysis which allows for a
description of the structure of individual islands for the case that
the global coupling is based on the stepfunction kernel (11).

In order to describe our methodologies, we consider the
solution shown Fig. 2a. There are eight islands, each symmetric and
each centered at the point

xi = 250i, i = 0, ±1, ±2, ±3, ±4.

(The islands corresponding to i = ±4 are each only half contained
within the domain −L ≤ x ≤ L with L = 1000.) Since the solution
is steady, u and v satisfy

d1uxx + F(x)u = 0, (26a)
d2vxx + G(x)v = 0, (26b)

where

F(x) = c1 − ã1 φ ∗ u − b̃1 φ ∗ v, (27)

G(x) = c2 − ã2 φ ∗ u − b̃2 φ ∗ v,
Fig. 3. Transition behavior for the function G(x).

and we have explicitly indicated the dependence of F and G on x
through u and v.

In Fig. 3 we plot G for a region encompassing the island cen-
tered at x = 0, the two adjacent deadzones and parts of the
adjacent islands. The analogous data for u is similar, the data is
presented for just one species for simplicity. The function G(x) ex-
hibits three different behaviors over three different regions in x.
Region 1 corresponds to the bulk of the island and in this region G
is, to a very close approximation, a small positive constant. Region
3 corresponds to the center of the deadzone and in this region G is
roughly a large negative constant. (We note that while in Region 1
G and F are constant to at least nine significant figures, in Region 3
G and F are constant to only four significant figures.) Region 2 is a
transition region connecting these two regions.

The behavior of G in these regions can be understood from the
convolution integrals (2). Since δ = 175, the convolution integrals
in Region 1 encompass the entire island centered at x = 0 and
some fraction of the adjacent deadzones where u and v are zero
to within numerical precision. As a result, the convolution inte-
grals that enter into G (and F ) are essentially independent of x over
most of the island structure. They are simply the means of u and v
over the island. (This, of course, would not be the case for convo-
lution kernels other than (11).) Only for values of x near the tails of
the islandwill the convolution integrals incorporate some nonzero
values from the adjacent islands. Since the nonlocal coupling en-
ters into the equations with a negative sign, these adjacent islands
cause G (and F ) to decrease. As x moves further into Region 2, the
convolution integrals pick upmore of the adjacent islands and still
incorporate all of the island centered at x = 0 thus, leading to a rel-
atively rapid decrease in G (and F ). As x approaches the center of
the deadzone (Region 3) the convolution integrals encompass two
adjacent islands so that there is no significant x dependence and
G and F are essentially large negative constants. In fact, it is these
nonlocal terms which stabilize extinction within the deadzone, as
extinction is unstable for the logistic model by itself. From (26) we
see that u and v satisfy constant coefficient equations in Regions
1 and 3, with sinusoidal behavior expected in Region 1 and expo-
nential behavior expected in Region 3, and an Airy Function type
transition region connecting the two constant coefficient regions.

We note that our computations show that u and v are zero
to within any reasonable numerical precision in the deadzone.
Thus, we cannot determine whether the solution in this region is
exponentially small or just zero. Since at steady state u and v satisfy
the second order linear differential equation (26), we expect that u
and v are nonzero in the deadzones, but at a level so small that it
cannot be resolved numerically.
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In Region 1 we can rewrite (26) as

uxx + Ω2
uu = 0, (28a)

vxx + Ω2
vv = 0, (28b)

where

Ω2
u =

c1 − ã1 φ ∗ u − b̃1 φ ∗ v

d1
,

Ω2
v =

c2 − ã2 φ ∗ u − b̃2 φ ∗ v

d2
, (29)

and Ωu and Ωv are independent of x.
In view of (28) u and v can be approximated in Region 1 by

u = Au cos(xΩu), v = Av cos(xΩv), (30)

for |xΩu| < π
2 and |xΩv| < π

2 , respectively. Eq. (30) will only be
inaccurate for values of x near the tails of the islands where u and
v are approaching zero and the convolution integrals incorporate
a contribution from adjacent islands. Here Au and Av are the ampli-
tudes of the islands. Using (30), the convolutions φ∗u and φ∗v are

φ ∗ u =
Au

δΩu
, φ ∗ v =

Av

δΩv

. (31)

Thus, Ω2
u and Ω2

v in (29) are not determined explicitly, but rather
are themselves functions of Ωu and Ωv . Using (31) in (29) results
in a coupled system of algebraic equations for Ωu and Ωv ,

d1Ω3
u = c1Ωu − ã1

Au

δ
− b̃1

ΩuAv

δΩv

, (32a)

d2Ω3
v = c2Ωv − ã2

ΩvAu

δΩu
− b̃2

Av

δ
. (32b)

Eqs. (32) can be readily solved as an algebraic system of
equations (it can also be reduced to a ninth degree polynomial for
either Ωu or Ωv). It is more instructive to reformulate (32) for the
ratios

Ru =
Au

Ωu
, Rv =

Av

Ωv

. (33)

We note that 2Ru and 2Rv are simply the total population of species
u and v, respectively, within the island, subject to the cosine
approximation in (30). We have

Ru =
δ

D


b̃2c1 − b̃1c2 + b̃2d1Ω2

u − b̃1d2Ω2
v


, (34a)

Rv =
δ

D


ã1c2 − ã2c1 + ã2d1Ω2

u − ã1d2Ω2
v


, (34b)

where D is given in (10). The extent of the islands in the cosine
approximation (30) are π/Ωu and π/Ωv , for u and v respectively.
Our assumption leading to (30) (supported by numerical compu-
tations) is that the islands are of extent O(δ). It follows that Ω2

u
andΩ2

v are small compared to the leading order terms in (34a) and
(34b). Neglecting these terms gives an estimate for the population
within each island solely in terms of δ and the kinetic parameters
of the model,

Ru/δ ≃
b̃2c1 − b̃1c2

D
, (35a)

Rv/δ ≃
ã1c2 − ã2c1

D
(35b)

The estimates (35) agree closely with computed values as can
be seen in Table 2 for a representative sampling of our computed
solutions (recall that I is the computed number of islands in the
Table 2
Computed and predicted values of Ru/δ and Rv/δ.

δ I Ru/δ Iu/δ (35a)

100 12 0.1629 0.1629 0.1629
175 6 0.1629 0.1628 0.1629
175 8 0.1629 0.1628 0.1629
175 10 0.1632 0.1633 0.1629
200 6 0.1629 0.1628 0.1629
300 4 0.1629 0.1628 0.1629
400 4 0.1629 0.1627 0.1629

δ I Rv/δ Iv/δ (35b)

100 12 0.08264 0.08264 0.08286
175 6 0.08282 0.08278 0.08286
175 8 0.08269 0.08263 0.08286
175 10 0.08162 0.08150 0.08286
200 6 0.08280 0.08276 0.08286
300 4 0.08283 0.08279 0.08286
400 4 0.08276 0.08268 0.08286

Fig. 4. Comparison of island structure with cosine fit obtained from (32).

computational domain). For entry in the table the values of Ru/δ
and Rv/δ are computed from the cosine approximation with the
amplitudes Au and Av taken from the computed solutions,whileΩu
andΩv were obtained froma numerical solution of the system (32)
and choosing the root pair where Ωu and Ωv were both positive
and where their sum was minimized (since we expect them to be
small). (We note that since (32) can be reduced to a ninth degree
polynomial there are at most nine real root pairs.) The quantities
Iu/δ and Iv/δ in the table represent the integrals of the computed
numerical solution over half of the island normalized by δ.

We illustrate the accuracy of the cosine fit in Fig. 4 where we
plot the computed cosine fit against the numerical solution for the
8-island casewith δ = 175.Wenote that the results shown in Fig. 4
are typical of results that we have obtained for many other param-
eter sets as well. These results demonstrate that the methodology
described above can successfully reproduce the computed island
structure. However, the methodology, while providing for scaling
laws for the total populationwithin each island, has several signifi-
cant limitations when employed to reconstruct specific solutions—
(i) it is restricted to a stepfunction kernel function, (ii) it requires
knowledge of the numerically computed amplitudes of the islands,
(iii) the cosine reconstruction does not capture the transitions to
the adjacent deadzones, and (iv) extraneous root pairs of the sys-
tem (32) have to be excluded. Point (iv) can be addressed by assum-
ing small Ωu and Ωv and using the procedure to choose the proper
root pair described above. In terms of point (i) above, at this time
we are only able to obtain a complete analysis for the stepfunc-
tion kernel function. As will be seen below, other kernel functions
generally give a more complicated structure for the islands, e.g.,
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tip-splitting or an amplitude modulation. A matched expansion
connecting the cosine approximation to an exponential decay via
an Airy function transition region (analogous to the expansion
in [9]) could, in principle, address point (iii) above; however, for
the parameters that we consider we have not been able to obtain
satisfactory accuracy from such an expansion. It is possible to ad-
dress point (ii) above, i.e., determine properties of the islandswith-
out using computed information, albeit with some loss of accuracy.
We consider this directly below.

In view of (34) estimates for the amplitudes Au and Av can be
obtained once estimates for Ωu and Ωv have been obtained. In or-
der to obtain such estimates, we refer to Fig. 3 and observe that
the end of the regions where the cosine approximation is valid (re-
gions where F and G are essentially positive constants) is close to
the points where F and G are zero. There is certainly a transition
region, however, the extent of the transition region is small com-
pared to the extent of the island as can be seen from the figure (this
is also the case for other island/deadzone solutions that we have
computed). Considering an island centered at x = 0 (see Fig. 4),
we employ the cosine approximation (30) in (27) and determine
Ωu and Ωv from the condition

F(xu) = 0, G(xv) = 0 (36)

where

xu =
π

2Ωu
, xv =

π

2Ωv

.

We therefore have

c1 = ã1φ ∗ u(xu) + b̃1φ ∗ v(xu), (37a)

c2 = ã2φ ∗ u(xv) + b̃2φ ∗ v(xv), (37b)

where we use the fact that the two convolutions are the only x-
dependent terms in F and G.

We define ℓ as the center of the island immediately to the right
of the island centered at x = 0, so that ℓ is simply the period of
the island/deadzone structure, ℓ = 2L/I . In this island the cosine
approximation is

u = Au cos(Ωu(x − ℓ)), v = Av cos(Ωv(x − ℓ)). (38)

Since we can take u and v to be zero in the deadzone separating
the two islands, we then have

φ ∗ u(xu) =
1
2δ

 xu

xu−δ

Au cos(Ωux)dx

+
1
2δ

 xu+δ

ℓ−xu
Au cos(Ωu(x − ℓ))dx, (39)

with similar expressions for φ ∗ u(xv), φ ∗ v(xu), and φ ∗ v(xv).
We assume that the extent of each island is less than δ, which is

the case for all of the solutions that we have found. Thus, the first
integral in (39) is merely the integral of the upper half of a cosine
wave and we have

φ ∗ u(xu) =
2Ru

2δ
+

Ru

2δ
(1 + cos(Ωu(δ − ℓ)))

=
Ru

2δ
(3 + cos(Ωu(δ − ℓ))), (40)

together with the analogous result for v,

φ ∗ v(xv) =
Rv

2δ
(3 + cos(Ωv(δ − ℓ))), (41)

where Ru and Rv are defined in (33). Using similar arguments we
have

φ ∗ u(xv) =
Ru

2δ
(3 + sin(Ωu(xv + δ − ℓ))), (42a)

φ ∗ v(xu) =
Rv

2δ
(3 + sin(Ωv(xu + δ − ℓ))). (42b)
We next consider approximations for xu and xv . Our computa-
tions indicate that the extent of the dead zone is generally close to
δ. Assuming that the extent of the dead zone is exactly δ we have

xu = xv =
ℓ − δ

2
,

so that

Ωu = Ωv = Ω̃u = Ω̃v =
π

ℓ − δ
, (43)

where we use Ω̃u and Ω̃v to denote the approximate value of Ωu
and Ωv , respectively.

While (43) is close to results from our computations, it does not
allow for the island extent to differ for the two species. In addition,
for all of our computations the island extent is greater than that
obtained from (43). We therefore assume that

Ωu(ℓ − δ) = π + ϵ1, (44a)
Ωv(ℓ − δ) = π + ϵ2, (44b)

where ϵ1 and ϵ2 are assumed small andwe look for solutionswhere
ϵ1 < 0 and ϵ2 < 0 consistent with our numerical results.

Using (44) in (41) and (42) and keeping only linear and
quadratic terms in ϵ1 and ϵ2 yields

φ ∗ u(xu) =
Ru

δ
+

Ruϵ
2
1

4δ
, (45a)

φ ∗ v(xv) =
Rv

δ
+

Rvϵ
2
2

4δ
, (45b)

φ ∗ u(xv) = Ru


1
δ

+
ϵ2
1

16δ
+

ϵ1ϵ2

8δ
+

ϵ2
2

16δ


, (45c)

φ ∗ v(xu) = Rv


1
δ

+
ϵ2
1

16δ
+

ϵ1ϵ2

8δ
+

ϵ2
2

16δ


. (45d)

Using (45) together with (34) expanded to retain only linear and
quadratic terms in ϵ1 and ϵ2 in (37) results in a system of two
quadratic equations in ϵ1 and ϵ2. The coefficients involve only the
kinetic parameters of the model, δ and ℓ. Since ℓ is simply the
period of each island/deadzone structure, it can be obtained simply
from the length of the domain L together with the number of
islands within each domain. The specific equations, obtained via
Mathematica, are given in the Appendix. For all values of δ that we
have considered all of the four root pairs of this system are real and
there is only one root pair where ϵ1 and ϵ2 are both negative. We
use this root pair in (44), since, as indicated above, we always find
that the island extent is greater than that given by (43).

An illustration of the accuracy of this reconstruction is shown
in Fig. 5 for the same case as shown in Fig. 4. The accuracy of the
amplitude fit is only slightly degraded from that shown in Fig. 4
where computed amplitude information was employed.

Finally, we compare amplitudes calculated analytically and
via numerical computations for the same solutions tabulated in
Table 2. After obtaining ϵ1 and ϵ2 we compute Ωu and Ωv from
(44), then Ru and Rv from (41) and then use (34) to compute Au and
Av . The results are tabulated in Table 3.

4. Parabolic kernel function

We next consider results for the parabolic kernel function (12).
All computations in this section were done with δ = 175 and
L = 1000, however, we employed two different basic parameter
sets. For the parabolic kernel function,we found that the computed
steady state patterns were very sensitive to initial conditions,
leading to a very large multiplicity of steady states. This was true



20 B.L. Segal et al. / Physica D 253 (2013) 12–22
Fig. 5. Comparison of island structure with cosine fit obtained from (45) and the
subsequent analysis described in the text.

Table 3
Computed and predicted amplitudes.

δ I Au from analysis Au from computations

100 12 0.7678 0.7647
175 6 0.5655 0.5646
175 8 1.1943 1.1899
175 10 3.5916 3.5528
200 6 0.7675 0.7660
300 4 0.7675 0.7664
400 4 2.0470 2.0414

δ I Av from analysis Av from computations

100 12 0.3752 0.3819
175 6 0.2832 0.2852
175 8 0.5865 0.5957
175 10 1.6147 1.6983
200 6 0.3831 0.3864
300 4 0.3856 0.3878
400 4 1.0148 1.0266

both when we used deterministic initial conditions and when we
used random initial conditions where different results were found
for different seeds. We describe here a sampling of the patterns
that we have found.

Employing the parameter set (25), we found patterns consist-
ing of arrays of islands of different amplitudes. One such exam-
ple is shown in Fig. 6. The solution consists of eight arrays, each
composed of three islands. Each array consists of a larger ampli-
tude island surrounded by two smaller amplitude islands. We note
that while the amplitude of the islands for species v is smaller than
that for species u, the island structure for species v is slightly more
extensive than for species u, thus indicating that for these param-
eters there are solutions such that v can survive in regions where
species u cannot. This was also the case for solutions obtainedwith
the stepfunction kernel (see Fig. 2b). It is also the case for other pat-
terns shown in this section.

Using other initial conditions we obtained a pattern that was
the reverse of the pattern shown in Fig. 6, eight arrays of three
islands each, but now each array consists of two larger and
one smaller island. Using still other initial conditions we found
patterns consisting of islands with a sinusoidal modulation in their
amplitudes. One such pattern is shown in Fig. 7.

For other initial conditionswe found an island structure consist-
ing of 32 islands. The pattern looks similar to that obtainedwith the
stepfunction kernel. The number of islands characterizes this solu-
tion as corresponding to the third band on the stability diagram
(see Fig. 1b). In this case there was very definitely not extinction
between the islands, as the solution minima are about 0.0002 and
Fig. 6. Eight array island structure for parabolic kernel function.

Fig. 7. Pattern exhibiting sinusoidal modulation of islands.

0.01 for u and v, respectively. Thus, for these parameters species v
can survive better in the ‘‘near’’-deadzones, even though the am-
plitude of the islands for species v is smaller than for species u.
Finally, for other initial conditions we were able to find conven-
tional island/deadzone structure similar to that obtained with the
stepfunction kernel.

We have found new phenomena using a different set of basic
parameters. Specifically, we employed the parameters

d1 = 1, d2 = 2, c1 = 49.9, c2 = 9.99,
ã1 = 50, ã2 = 10, b̃1 = 0.1, b̃2 = 0.03.

The coexistence critical point is now (uĎ, vĎ) = (0.996, 1). We
found a semi-extinction solution (Fig. 8). There are now 11 islands
for u, but v is essentially zero (v is of order 10−15).We note that the
semi-extinction critical point for the systemof ordinary differential
equations (i.e., without diffusion and nonlocal coupling)with these
parameters is uĎĎ = 49.9/50 ≃ 1, vĎĎ = 0 and is unstable. We
have also computed this solution with the same initial data for u,
butwith the initial condition for v set to zero. The result is the same
solution for u, but with v identically equal to zero. Thus, this semi-
extinction solution is also a solution of the scalar Eq. (1a) with v
identically zero. We also note that using the stepfunction kernel
with these parameters and initial conditions led to a conventional
island/deadzone solution.

We found another semi-extinction solution shown in Fig. 9,
using other initial conditions. Here there are eight arrays, each
consisting of three islands of variable height (similar to Fig. 6) for
u, while v is essentially 0 (again of the order of 10−15).
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Fig. 8. Semi-extinction solution for parabolic kernel function.

Fig. 9. Semi-extinction solution consisting of eight arrays.

We have not been able to find a conventional island/deadzone
structure for these parameters and the parabolic stepfunction. We
did find a 32-island structure, corresponding to a higher order
band in the stability diagram. For this solution there are no strict
deadzones, the solution is at a low level, but one within what we
believe is the accuracy of the computation (theminimum value for
v is roughly 0.002 while theminimum for u is roughly 3.7×10−5).
As we found for other parameters (see above), v is larger than u
in the ‘‘near’’-deadzones, even though it appears to be the species
most prone to extinction for these parameters.

5. Elevated triangle kernel functions and tip-splitting

In this section we show that the use of φet can lead to tip-
splitting within the islands. We employ the same parameters as
in (25) with δ = 175. A solution exhibiting tip-splitting is shown
in Fig. 10. Tip-splitting is very prevalent with the use of φet and
this solution is just one of many that we have computed exhibiting
such a structure.

6. Conclusion

We have studied a model of competing populations with non-
local interactions. The system that we consider is a two-species
extension of the Fisher equationwith the nonlocality due to convo-
lution integrals against specified kernel functions extending over
an interval 2δ. All of our kernel functions are even and of compact
Fig. 10. Solution exhibiting tip-splitting using φet with α = 3. Parameters given in
(25).

support. We consider only the case where the coexistence equilib-
rium solution, (uĎ, vĎ), spatially homogeneous and independent of
time, is stable for local interactions (δ → 0) and is destabilized
by the nonlocal interactions (i.e., δ sufficiently large). We note that
it is not necessary for the kernel function to be of compact sup-
port. For example, it could be a Gaussian or some modification of
a Gaussian. In this case δ represents a characteristic length scale
associated with the kernel function.

A linear stability analysis shows that if the Fourier transform
of the convolution kernel function becomes negative there can
be bands of wavenumbers where instability occurs and pattern
formation is expected. We have found nonlinear patterns by
solving the system numerically with initial conditions that are
a small perturbation of the unstable equilibrium (uĎ, vĎ) until
steady state solutions are obtained. The resulting patterns are truly
nonlinear, being far from a perturbation of (uĎ, vĎ) although the
wavenumbers associated with the unstable band from the linear
stability analysis provide an accurate indicator of the spatial period
of the patterns. The most prominent pattern we find is that of an
island/deadzone structure, where a series of islands of nonzero
population is separated by deadzones where the population is
essentially zero.

For a stepfunction kernel, all patterns that we have been able
to find consist of an array of identical island/deadzones. We
have analyzed the structure of the islands and shown that they
can be approximated by the positive half of a cosine wave. For
fixed parameters a multiplicity of island/deadzone solutions are
possible depending on initial conditions. The solutions differ only
in the island amplitude and the number of islands within our
computational domain (i.e., the period of the island/deadzone
pattern). Furthermore, we have developed scaling relations which
predict, to a close approximation, the total population of each
island in terms of parameters of the model. Finally, we are able
to estimate properties of the island, i.e., the amplitude and extent,
in terms of parameters of the problem and the period of the
island/deadzone pattern. These estimates exhibit close agreement
with numerical computations.

For other convolution functions that we have examined, we
still find in most instances an island/deadzone structure, but with
a modulation in the amplitude of the islands. In some cases this
modulation is sinusoidal while in other cases the modulation is
manifested in a grouping of the islands into arrays, with each
array exhibiting a specified pattern of amplitudes. We also find
instances of tip-splitting of the island, so that within each island
there is a ‘‘near’’-deadzone, where the populations are small, but
greater than zero. Finally, for some parameters we find semi-
extinction patterns, where one of the species is extinct while the
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other species exhibits an island/deadzone behavior. As for the
stepfunction kernel, for fixed parameters a large multiplicity of
different steady state patterns can be obtained depending on initial
conditions.
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Appendix

Using (44) in (41) and expanding up to quadratic terms in ϵ1 and
ϵ2 yields

Ru =
δ

D


b̃2c1 − b̃1c2


−


b̃2d1


π + ϵ1

ℓ − δ

2

− b̃1d2


π + ϵ2

ℓ − δ

2
, (A.1a)

Rv =
δ

D


ã1c2 − ã2c1


−


ã2d1


π + ϵ1

ℓ − δ

2

− ã1d2


π + ϵ2

ℓ − δ

2
. (A.1b)

Using (A.1) together with (44) in (45) and keeping only linear
and quadratic terms in ϵ1 and ϵ2 results in the coupled system of
quadratic equations

0 =
d1π2

(ℓ − δ)2
+

2d1πϵ1

(ℓ − δ)2
+ A11ϵ

2
1 + A12ϵ1ϵ2 + A22ϵ

2
2 , (A.2a)

0 =
d2π2

(ℓ − δ)2
+

2d2πϵ2

(ℓ − δ)2
+ B11ϵ

2
1 + B12ϵ1ϵ2 + B22ϵ

2
2 , (A.2b)

where

A11 = −Z

ã2b̃1d1


16 + π2

− ã1b̃2d1

16 + 4π2

+ 3ã1b̃1

(d2π2

− c2)(ℓ − δ)2


+ c1(ℓ − δ)2

4ã1b̃2 − ã2b̃1


,

A12 = −Z

π22ã2b̃1d1 − 2ã1b̃1d2


+(ℓ − δ)2


2ã1b̃1c2 − 2ã2b̃1c1


,

A22 = −Z

π2ã2b̃1d1 − ã1b̃1d2


+ (ℓ − δ)2


ã1b̃1c2 − ã2b̃1c1


,

B11 = −Z

π2ã2b̃1d2 − ã2b̃2d1


+ (ℓ − δ)2


ã2b̃2c1 − ã2b̃1c2


,

B12 = −Z

π22ã2b̃1d2 − 2ã2b̃2d1


+ (ℓ − δ)2


2ã2b̃2c1 − 2ã2b̃1c2


,

and

B22 = −Z

ã2b̃1d2


16 + π2

− ã1b̃2d2

16 + 4π2

+ 3ã2b̃2

d1π2

− c1(ℓ − δ)2


+ c2(ℓ − δ)2

4ã1b̃2 − ã2b̃1


,

where

Z =
1

16D(ℓ − δ)2
.

For the parameters used in Fig. 5 the system of quadratics is

0 = 0.00007019 + 0.0000446804ϵ1 − 0.213983ϵ2
1

− 0.0206616ϵ1ϵ2 − 0.0103308ϵ2
2 = 0, (A.3a)

0 = 0.000350919 + 0.000223402ϵ2 − 0.0407318ϵ2
1

− 0.0814637ϵ1ϵ2 − 0.102681ϵ2
2 = 0, (A.3b)

whichhas the single pair of negative roots (ϵ1, ϵ2) = (−0.0115445,
−0.0526148).
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